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Vibrational Analysis and Modeling of Skyscraper Response to Earthquakes 

Julia Zimmerman 

I. Background 

Although skyscrapers as they appear today are a relatively recent achievement, the 

motivation to build up into the sky has been in the human consciousness for some time.Tall 

structures, like towers, were first made from stone, but stone was heavy and structurally 

incapable of accommodating windows for lighting.
[2]

 Developments in engineering led to 

such structures as the flying buttress, which helped to deliver some of the loads imposed on 

the structures to the ground and allowedfor increased flexibility in construction.
[2]

 

Experimentation with concrete during the nineteenth century assisted in the development of 

skyscrapers; differing compositions of concrete have a variety of structural abilities, drying 

times, and appearances.
[1]

 Soon thereafter, steel became the primary material for use in the 

construction of buildings, but it wasn’t until Robert Talbot published a paper about the 

possibility ofsteel beams being reinforced with concrete that the skyscraper really began to 

develop.
[1]

 

With the use of concrete and steel in tandem 

came better structural security and an increased 

ability to hold and transfer loads. These abilities also 

led to the development by many, most notably 

Fazlur Khan, of new structural designs.Khan, a 

Bangladeshi born and primarily American educated 

structural engineer, played a pivotal role in the 

development of the modern skyscraper.
[5]

He aided 

 

Figure 1: Fazlur Khan with his 

daughter, Yasmin 
[5] 
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in the development of the Frame-Shear Wall structure and is credited with the invention of 

the Tubular structure.
[1]

 

 The frame-shear wall structure operates by 

using the natural movement of the frame and the shear 

wall to restrict movement.
[8]

 Independently, the frame 

structure and the shear wall will move in opposite 

directions when a force is present.
[8]

As shown in Figure 

2, when the frame and shear wall are used in tandem, 

each piece exhibits the same behavior as it did independently, but the juxtaposition of the 

structures allows them to push against each other and opposeeach other’s motion.
[8] 

In the tubular structure, a building is divided up into 

sections, each of which is made up of vertical steel 

columns.
[10]

These columns are arranged in such a way as to 

form multiple square tube shapes within the structure of the 

building.
[10]

 Figure 3 shows the cross-sectional views of the 

skyscraper at several levels, each of which resembles a 

grid.
[10]

Structurally, the effect of the tubes is anincreased 

ability to resist lateral forces, which are typically caused by 

wind.
[1]

 This is done in much the same way as with the frame-

shear wall structure.
[1]

 The combined outlinesof the tubes 

work together to resist movement by pushing on each 

other.
[1]

To continue the idea of structural support, certain 

areas within the structure contain extra horizontal connections 

 

Figure 2: Frame-shear Wall structure 
[8] 

 

Figure 3: Tubular structure in 

the Willis Tower (formerly the 
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(represented by the darkened bands in Figure 3) in order to support the heating, ventilation, and 

air conditioning systems as well as to distribute the total load imposed by the above floors among 

the beams.
[10]

 Many buildings with some variation of the tubular structure also feature inset 

sections as part of their design. This structure reduces the weight of the building at the top, 

allowing for more flexibility in the wind and lower load support requirements below. This design 

is currently the preferred design in the construction of new skyscrapers. 

 One of the most important things a building must do is withstand the force of an 

earthquake. During an earthquake, the ground that a building sits on shifts, pulling the base of 

the building with it.
[4]

 Due to inertia, the top of the building remains motionless until the force of 

the earthquake reaches it.
[4]

 The building begins to act like a wave; the constantly shifting ground 

acts as a force of vibration and the rest of the building is allowed to vibrate freely. The amplitude 

of the vibration at the top of the building depends on its length. Longer buildings, like 

skyscrapers, are more flexible than mid-length buildings,
[3]

 and so have longer amplitudes. 

Additionally, long buildings have longer periods of vibrations, which combines with the long 

amplitude to reduce the immediate stress put on a tall building versus a short building. 

 Even though the stress put on a skyscraper by earthquake vibrations may be smaller than 

those put on a small high-rise building, it is still important that these vibrations be managed. Too 

much vibration, be it in the scope of force or time, will damage any building and become a 

danger to the people in and around it.Fortunately, there are multiple ways to improve the strength 

of a building. 

 Part of the strength of a building comes from the materials that make up its structure. For 

instance, steel is preferred over wood for use in tall buildings because it is stronger and requires 

more force to be applied to it before it will deform. Steel is also more fire resistant than wood, 
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though neither material is particularly strong under heat. In that regard, concrete is a much more 

reliable choice of material.
[1]

 Concrete is also at optimal strength when being compressed
[1]

 but 

deforms when under tension, which means concrete can support significant loads without 

cracking. Three of the additional benefits of concrete are that it dampens vibrations that pass 

through it, its production is less expensive than that of steel, and its production can be started 

before a project officially begins via the use of formwork
[1]

. Formwork is a type of mold that 

concrete can be poured into so that it dries in a particular shape.
[1]

 These shapes can then be 

connected to form a structure.
[1]

 This type of concrete construction is often used in parking 

garages; large slabs are constructed before the project construction begins. When the structure is 

ready for concrete, the slabs are shipped to the worksite and then are lifted into place and bonded 

with more concrete. This makes the formation of particular shapes much more practical and 

allows commonly used shapes to be readily available for any project. 

Another way to improve the strength of a 

building is through the use of its structure. This can be 

shown with the use of basic shapes in the frame of the 

building. Often, reinforcing bars, called knee braces, are 

placed diagonally in the corners of rectangular 

framework as shown in Figure 4 to prevent rotation 

about the connection points between trusses and 

columns. The idea of structural strength can also be used 

on the large scale. The orientation and size of the 

framework in the structure can determine the amount of 

force that can be applied to the frame before it becomes 
 

Figure 4: Knee bracing in corner 

structure 
[9] 



 

damaged. For example, a piece of cardboard is much weaker along its smooth, flat sides than 

against its cut, corrugated edges. Therefore, it will require more force to bend the cardboard 

when that force is applied to the corrugation than when it is 

is a simplistic model, the same concept is applicable to many materials 

steel beams included. 

 One of the most common ways to manage the 

vibrational force exerted on a building is through the 

use of a damping device. These devices reduce the force 

felt by the building from an earthquake in a variety of 

ways and can be placed into two 

categories are material based and 

electro-magnetic, hysteric, viscous, and viscoelastic dampers

the motion of the building by transferring the kinetic energy of the earthquake to some other type 

of energy which then disperses from the system.

transferring the kinetic energy of the building and the ground into heat.

control the breaking of solid materials and Viscous dampers, like 

use forced fluid movement to countera

locations that will minimize the movement of the structure. In this way, they 

bracing units.
[6] 

 Additional mass dampers can be further 

broken down into tuned mass dampers (TMD)

tuned liquid dampers (TLD).
[6]

Tuned mass dampers 

tend to embody the idea of a pendulum; the damper 

5 

a piece of cardboard is much weaker along its smooth, flat sides than 

against its cut, corrugated edges. Therefore, it will require more force to bend the cardboard 

when that force is applied to the corrugation than when it is applied to the flat side. Although this 

is a simplistic model, the same concept is applicable to many materials in a variety of

One of the most common ways to manage the 

a building is through the 

These devices reduce the force 

felt by the building from an earthquake in a variety of 

two categories. These 

and additional mass.
[6]

Material based dampers include friction, 

, viscous, and viscoelastic dampers.
[6]

 These dampers work to reduce 

building by transferring the kinetic energy of the earthquake to some other type 

of energy which then disperses from the system.
[4]

Friction dampers disperse energy by 

transferring the kinetic energy of the building and the ground into heat.
[4]

 Viscoelastic dampers 

control the breaking of solid materials and Viscous dampers, like the piston shown in Figure 5

use forced fluid movement to counteract motion.
[4]

 These types of dampers are often placed in 

minimize the movement of the structure. In this way, they can also 

Additional mass dampers can be further 

broken down into tuned mass dampers (TMD) and 

Tuned mass dampers 

tend to embody the idea of a pendulum; the damper 

Figure 5: Viscous damper acting in a 

bracing system 
[4] 

Figure 6: Tuned Mass Damper 

a piece of cardboard is much weaker along its smooth, flat sides than 

against its cut, corrugated edges. Therefore, it will require more force to bend the cardboard 

applied to the flat side. Although this 

in a variety of shapes, 

Material based dampers include friction, 

These dampers work to reduce 

building by transferring the kinetic energy of the earthquake to some other type 

mpers disperse energy by 

Viscoelastic dampers 

the piston shown in Figure 5, 

These types of dampers are often placed in 

can also function as 

 

Figure 5: Viscous damper acting in a 

 

Figure 6: Tuned Mass Damper 
[7] 
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must be as free to move as possible in order to restrict vibration. These dampers are typically 

placed in the top floors of a building and utilize inertia to reduce vibrational forces.
[12]

When the 

building shakes, the pendulum stays where it is for a longer period of time than the top floors do. 

This is becausethe force of the earthquake on the building must move up from the base of the 

building to the top floors of the building and then to the damper itself. When the pendulum does 

begin to move, it will be opposite the upper floors of the building, just as is shown in Figure 6. 

Due to the contrasting motion, the upper floors and the pendulum will pull on each other. The 

contrary motion will make the net force on the top floors be very close to zero, which means that 

area of the building will stop moving. 

 In contrast, tuned liquid dampers have a bit more flexibility. As Figure 7 portrays, the 

additional mass is a liquid, so it can be contained in a unit and be allowed to move freely within 

the unit.
[6]

 This liquid also tends to be water, simply because of the convenience and multiple 

uses of water. If a building’s water storage rests on its roof, then the storage unit doubles as a 

tuned liquid damper as it will allow the water to 

move freely and exhibit inertial properties within 

the container.
[6]

 As such, the shape of the storage 

unit can also determine the period of oscillation 

of the water; the period will vary based on the 

size of a rectangular tank.
[6] 

II. Two-Degree of Freedom (Model 1) 

 The first simulation shows a two-degree of freedom model. These degrees of freedom are 

linear movement in the vertical direction and rotation about the center of mass of the floor; 

horizontal movement is not included. The simulation begins with an arbitrary“floor” from a 

 

Figure 7: Tuned Liquid Damper 
[11] 
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theoretical building, like that shown in Figure 8, 

being displaced by some distance, y. In its 

displaced position, the sum of forces acting on the 

floor is given by y L RF ma m y F F mg
••

= = = + −  

and the sum of torques acting on the floor by 

( )
2

cg R L

D
M I I F Fα θ

••  
= = = −  

 
 . In this model, 

the angle of rotation will be a changing value and will need to be written in terms of the given 

constants. Based upon Figure 9, 
( )1 2

2

x x
y

+
=  and 

( )1 2

2

x x
y
• +

= , where y
•

is synonymous with 

'y .  Figure 9 also shows that
( )2 1

sin
x x

D
φ

−
= .In addition, the Taylor series representation of sine 

is given by 
3

sin ...
3!

φ
φ φ= + + , and can be truncated to sinφ φ= . Small angle approximation 

using those three pieces shows that so long as 

phi is less than 6 degrees, the error 

contributionof truncating the expression for 

sine in the simulation will be .01%.Since sine 

is considered to be equivalent to phi, phi can 

be restated as 
( )2 1x x

D
φ

−
=  and its second 

derivative as 
2 1x x

D
φ

•• ••

••

 
− 

 
= . Since

( )1 2

2

x x
y

+
= , the second derivative of y is 

1 2

2

x x

y

•• ••

••

 
+ 

 
= . 

Substituting the expression for y
••

into that of the sum of forces acting on the floor gives

 

Figure 8: Forces and lengths associated 

with the floor when it is not displaced 

Figure 9: Lengths associated with the floor 

when the floor is displaced 



8 

 

1 2

2
R L

m x x

F F mg

•• •• 
+ 

 
= + − . Rearranging this equation to solve for 1x

••

 and 2x
••

gives 

{ }1 2

2

2
R L

g
x x F F

m

•• ••

+ = − − , which will be referred to as Equation I.In the same fashion, y
••

can be 

substituted into the equation for the sum of torques acting on the floor, leading to 

( )
2 1

2
R L

x x
D

I I F F
D

θ

•• ••

••

 
− 

  = = −  
 

. This can be rewritten as ( )
2

2 1
2

R L

D
x x F F

I

•• ••

− = −  and will be 

called Equation II. 

 The expressions for 1x
••

 and 2x
••

can be found by utilizing Equations I and II in a system of 

equations. Solving for these values gives { } ( )
2

1

1

4 4
R L R L

g D
x F F F F

m I

••

= + − − −  and

{ } ( )
2

2

1

4 4
R L R L

g D
x F F F F

m I

••

= + − + − . When this system is restated in the form of a matrix, it 

becomes  

2 2

1

2 2

2

1 1

14 4

141 1

4 4

R

L

D D

x F gm I m I

FD D
x

m I m I

••

••

 
− +          = −         
+ −    

     (1)  

To simplify this matrix, let  
21

4

D
a

m I
= − , 

21

4

D
b

m I
= + , and 

1 11

1 14
G h

   −
= =   

   

��

 where 
1

4
h g

−
=

This can be further simplified by designating 
a b

A
b a

 
=  
 

��

 and 
R

L

F
F

F

 
=  
 

��

. These simplified 

expressions are substituted into the matrix equation to give X AF G

••

= +
��� �� ��

.  It is important to note 

that the spring-damper unit is not taken as a point-sized unit and therefore has different forces 

acting at different points along its vertical length. The sum of the forces acting on these units can 
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be written in terms of each of their end points, 1x  and 3x  for the left side and 2x and 4x  for the 

right. The sum of the forces for the left and right spring-damper units are given as 

( )3 1 3 1L L L
F x x k x x c

• • 
= − + − 

 
 and ( )4 2 4 2R R R

F x x k x x c
• • 

= − + − 
 

, respectively. Utilizing the 

same steps as those that were used to solve for 1x
••

 and 2x
••

 lets these two equationsbe written into 

matrix form to become 

( ) ( )

( ) ( )

4 4 3 3

2 2 1 11

2 2 1 1
2 4 4 3 3

R R L L

R R L L

R R L L

R R L L

a x k x c b x k x c
a x k v c b x k v cv

b x k v c a x k v c
v b x k x c a x k x c

• •

•

• • •

    
+ + +      − − + − −        = +   − − + − −       + + +          

   (2) 

When simplified using the same expressions as those used in the previous matrix, the first term 

becomes
1

2

R

L

v Fa b

Fb a
v

•

•

 
    =        

 

. The second termin this sum is represented under a single vector for 

simplicity: 

4 4 3 3

4 4 3 3

R R L L

R R L L

a x k x c b x k x c

B

b x k x c a x k x c

• •

• •

    
+ + +        =

    
+ + +        

��

.  The two matrices can be combined 

into one simplified matrix as

1
1

2 2

1 1
1

2 2

2

00 0 1 0 0

00 0 0 1 0

L R L R

L R L R

x
x

x x

bk ak bc ac v Bh
v

ak bk ac bc v h B
v

•

•

•

•

 
        
        
        = + +        − − − −
        

− − − −         
  

���

���

 . 

To further simplify this system, it is assumed that (X3=)… 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0 0

0 0

sin cos

sin cos

R L R L

R L R L

ak bk A t A ac bc t
B

bk ak A t A bc ac t

ω ω ω

ω ω ω

+ + + 
=  

+ + + 

��
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Let  
R L

k k k= =   and  
R L

c c c= =  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0

0 0

sin cos

sin cos

a b kA t A c a b t
B

a b kA t A c a b t

ω ω ω

ω ω ω

+ + + 
=  

+ + + 

��

 

2 21 1 2

4 4

D D
a b

m I m I m

   
+ = − + + =   

   
 

( ) ( ) ( ) ( )( )0 0 0
1 12 2 2

sin cos sin cos
1 1

kA cA A
B t t k t c t

m m m

ω
ω ω ω ω ω

    
= + = +    

    

��

 

( ) ( )( )

1
1

2 2 0

1
1

2

2

0 0 1 0 0 0

0 0 0 1 0 02
sin cos

' 1

' 1

x
x

x x A
k t c t

vbk ak bc ac g m
v

vak bk ac bc g

v

ω ω ω

•

•

•

•

 
        
        
        = + + +        − − − −
        

− − − −        
  

 

 Running the simulation in MATLAB shows a floor whose right endpoint is anchored to 

its equilibrium position. The left endpoint in set into motion such that the entirety of the floor 

appears to pivot on its right endpoint. At any point in time, the angle made between the floor and 

the horizontal that runs through the right end is less 

than 45 degrees from that horizontal, and that angle 

gradually decreases as a result of the damper as the 

floor moves. Eventually, the floor comes to rest at its 

equilibrium position, where it is perfectly horizontal. 

III. Three-Degree of Freedom (Model 2) 

 The second model is a system with three 

degrees of freedom, allowing for motion in the 

vertical and horizontal directions along with rotation 

about the center of mass of the floor. Motion in the downward and leftward directions and 

 

Figure 11: General force diagram for 

Model Two 
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counterclockwise rotation are considered to be 

positive.This model also includes an outside force 

that pushes on the floor from above. Examples of this 

might be general human activity and sudden changes 

of force from above floors due to their movement. 

Figure 11 shows that the sum of the forces acting on 

the floor is ( )1 2F F ma+ =
��� ��� �

and the sum of the torques is

2cos cos ,sin
2 2

L L
mg Fτ θ θ θ

−   
= + ×   
   


� ���

. As Figure 12 shows, the length of the floor can 

berepresented as ( ) ( )
2 2

2 1 2 1
L x x y y= − + − . If this is set equal to 0 and manipulated with algebra, 

the statement becomes 
( )

( )

2 1
2 1

2 1
2 1

0

y y
y y

x x
x x

• •

• •

 
− −  =

−  
− 

 

.Also based on Figure 12, 
( )

( )
1 2

2 1

tan
y y

x x
θ

−
=

−
. This 

expression and its derivative, 
1 2

2 1

tan

y y

x x

θ

• •

•

• •

 
− 

 =
 

− 
 

, yield 1 tan tanθ θ
•

= − after being substituted into 

the previous equation. 

 In this model, like the last, the spring and the damper are considered to be in and acting 

on the same points on the floor and the ground, those points being the ( )0, 0  points on the 

ground, ( )1 2,x x , and ( )1 2,y y . This allows the force acting on each contact point between the 

floor and the spring/damper unit to be based on and written as a single point. As such, both of 

these force equations are based on the general model for vibrational analysis and are given as 

 

Figure 12: Length-based relationships 

in Model Two 



12 

 

1 1 1 1 1
, ,F k X Y c X Y

• •

= − −
���

and
2 2 2 2 2

, ,F k X Y c X Y
• •

= − −
���

. When substituted into the equation 

for the sum of forces, these force expressions yield 

1 1 2 2 1 1 2 2
, , , ,ma k X Y X Y c X Y X Y

• • • • 
= −  +  − −   

 

�

. Dividing this equation by the mass of the 

floor in order to isolate its acceleration gives 
1 1 2 2 1 1 2 2

, ,
cm

k c
a X Y X Y X Y X Y

m m

• • • •−
= + + − + +

����

. 

The equation can be further simplified through an elimination of the sums of coordinate points. 

This is done by stating the coordinate points of the center of mass rather than those of floor’s end 

points. The coordinate points of the center of mass are written in terms of the previously given 

coordinate points because those are known values with known relationships.The coordinates of 

the center of mass are then given by 1 2

2
cm

X X
X

+
=  and 1 2

2
cm

Y Y
Y

+
= . With these coordinates, 

simplified equation becomes 
2 2

, , ,
cm cm cm cm cm cm cm

k c
X Y a X Y X Y

m m

•• •• • •−
= = −
����

. 

It’s worth noting that the equation above is a combined equation for cmX
••

 and cmY
••

, so it 

counts as two differential equations. These equations can be converted into a system of equations 

and stated in matrix form. This is done by restating cm XX V
•

= and cm YY V
•

=  then rewriting the 

original equations, which are now expressions for XV
•

 and YV
•

, in terms of 
X

V  and 
Y

V . The 

system is then stated as the multiplication of two matrices: 

0 0 1 0

0 0 0 1

2 2
0 0

2 2
0 0

X
X

Y

Y

X
X

Y Yk c

Vm mV
Vk c

V m m

•

•

•

•

  
    
    
   − −  =     
    

− −    
           

(3) 
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 However, this portion of the system only encompasses forces and motion in the 

horizontal and vertical directions, not torques and rotation.  Previously, the sum of the torques 

acting on the floor was given by 1 2cos ,sin cos , sin
2 2

L L
I I F Fα θ τ θ θ θ θ

••

= = = × + − − ×
��� ���

. 

In order to complete this sum, the two forces acting on the floor must be stated in terms of their 

locations of action on the floor. These are 
1 1 1 1 1 1 1 1 1

, , ,F k X Y c X Y kX c X kY cY
• • • •

= − − = − − − −
���

 

and 
2 2 2 2 2 2 2 2 2

, , ,F k X Y c X Y kX c X kY cY
• • • •

= − − = − − − −
���

. Both expressions are substituted 

into the previous equation and algebraic manipulation is used to relocate the coefficient of the 

sum to the left side. The cross products are then carried out to give 

( ) ( )1 1 1 1 2 2 2 2

2
cos sin cos sin

I
kY cY kX c X kY cY kX c X

L

θ
θ θ θ θ

••
• • • •       

= − − − − − + − − − − − − −              
. 

The expression is simplified through the combination of like terms: 

( ) ( )2 1 2 1 1 2 1 2

2
cos sin

I
k Y Y c Y Y k X X c X X

L

θ
θ θ

••
• • • •      

= − + − + − + −            
. At this point, the 

difference between the locations of the contact points are written in terms of other, constant 

terms for the floor. These are given as
2 1

sinY Y L θ− = , 2 1 cosY Y L θ
• • •

− = , 
2 1

cosX X L θ− = , and

2 1 sinX X L θ
• • •

− = − . When these are substituted into the equation, the equation becomes 

2
cos sin cos sin cos sin

I
kL cL kL cL

L

θ
θ θ θ θ θ θ θ θ

••
• •   

= + + −      
, which can be simplified to 

( ) ( )
2 2

2 2
2sin cos cos sin

2 2

kL cL

I I
θ θ θ θ θ θ
•• •

= + −  with the use of factoring and other algebraic 

manipulation. The second part of this sum can be written in a way that is more manageably 



14 

 

solved through the use of the trigonometric identities for cosine and sine, given as 

2 1 cos 2
cos

2

θ
θ

+
= and

2 1 cos 2
sin

2

θ
θ

−
= . Use of these gives ( ) ( )

2 2

sin 2 cos 2
2 2

kL cL

I I
θ θ θ θ
•• •

= + . 

The solution of this equation will involve theta. Like in the first model, small angle 

approximation will prove that the error present in the solution will be very small, so long as theta 

is also small. The Taylor series representation for the sine function is 
3 51 1

sin ...
3 60

x x x x= − + +  

and that for the cosine function is 
2 41 1

cos 1 ...
2 24

x x x= − + + ; these show that sine can be 

approximated as theta and cosine can be approximated as 1. This leads to 
2 2

(2 )
2 2

kL cL

I I
θ θ θ
•• •

= + . 

To add this differential equation to the matrix system, the equation must be written in terms of 

omega, whereθ ω
•

= . When this is done, the original equation becomes 
2 2

(2 )
2 2

kL cL

I I
ω θ ω
•

= + . 

These equations lead to the matrix 2 2

0 1

2

kL cL

I I

θ θ

ω
ω

•

•

  
    =          

, which is combined with the previous 

matrix for the full system. 

2 2

0 0 1 0 0 0

0 0 0 1 0 0

2 2
0 0 0 0

2 2
0 0 0 0

0 0 0 0 0 1

0 0 0 0
2

X X

Y
Y

X

X
Y k c Y

m mV V
k c

V
V m m

kL cL

I I

θ
θ ω

ω

•

•

•

•

•

•

  
  

   
  − − 
   
   

= − −    
   
   
   
   

  
   

   (4) 

Upon running this simulation, the differences in range of motion between the first 

simulation and this one are apparent. In this simulation, the floor begins its motion in the 
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downward and leftward directions such that it rebounds from this motion at an angle. As 

the motion of the floor continues, it is evident that the center of mass of the floor moves 

between its bottom left and top right corners of its range of motion while the floor itself 

rotates about its center of mass. Each of these movements decreases in magnitude as a 

result of the spring-damper units. 
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