
1 
 

Jesus Munoz Ortiz 

Calculus for Engineers II 

Professor England 

 

Guitars: The Sound of Mathematics 

 

I. Background 

Our human senses allow us to interact with the environment, and fully immerse ourselves 

into it. Without any of these senses, one can’t experience life as it should be. For some, senses 

are what give meaning to their lives. However, some favor specific senses more than others. 

Take, for instance, musicians. For them, the hearing sense is a crucial sense of theirs that may 

ultimately have led them to pursue a music career and an interest in playing instruments. Perhaps 

the easiest instruments to explain sound with are string instruments, such as the guitar. 

The history of guitars can be traced back to predate written history, with the oud and the lute. 

The origin of the guitar has close ties with Christianity as it was said that a man named Lamech, 

who was Noah’s grandfather and the sixth grandson of Adam and Eve, designed the Arab 

precursor to the guitar. After hanging the body of his dead son from a tree, Lamech was able to 

come up with the shape of the oud instrument. Another instrument called the lute also became 

prominent as it was passed from the Egyptians to the Greeks and then onto the Romans, who 

took it to Europe. Although the lute was a four-string instrument, the oud contained five strings. 

Some believe that the oud was inspired by the lute since oud is described as a “fretless, plucked 

short-necked lute with a body shaped like half a pear.” By the end of the Renaissance, the lute 

had immensely evolved over time to the point where most lutes had between 20 and 30 strings. 
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Unfortunately, the shape of the instrument lost popularity and instead a curved shape won over 

15th and 16th century Spaniard musicians. This led to the creation of Baroque guitars, which 

contained five strings and introduced the inclusion of a fretboard. Another instrument like the 

guitar, called the vihuela, became popular in Spain and was used commonly by Mariachis. By 

the 1970s, the evolution of Spanish guitars settled as the guitars were smaller and had six 

strings[1]. 

 MatLab offers many tools to users to create many more things. One of these things 

includes making a guitar with proper guitar sounds using a synthesizer’s technology.  A 

synthesizer is an electronic musical instrument that generates sound via vibrations using 

electronic devices such as oscillators, modulators, and carriers. The history of the synthesizer can 

be traced back to a 7-ton machine around the start of the 20th century that used motors to produce 

electricity and telephone receivers to turn them into sound. This machine was known as the 

telharmonium and was shut down by former American electronics company The RCA 

Corporation before they created Mark II, which is often thought of as the first programmable 

synthesizer. Affectionally named ‘Victor’, Mark II was made at Columbia University and used a 

paper tape reader as its sequencer[2]. Later, the synthesizer had many advancements such as the 

inclusion of a Voltage Controlled Oscillators (VCOs), noise generators, and Frequency 

Modulation, all of which help make synthesizers sound how they are now. 

No matter what sound is produced, each sound takes the shape of a wave. Depending on 

the sound produced, the soundwave created could vary. For instance, a quieter sound produces 

sound waves with a small amplitude, whereas a louder sound produces a large amplitude. 

Similarly, a lower-pitch sound produces sound waves with longer wavelengths, whereas a higher-

pitch sound produces shorter wavelengths[3]. It’s also important to note that there is not just one 
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soundwave being produced when a string is plucked but instead, a series of soundwaves are 

produced[4]. 

 

II. Mathematics in Instruments 

Soundwaves are three-dimensional, each with length, width, and height. However, this 

makes it more difficult to mathematically represent a wave. Instead, we can represent a wave 

using a one-dimensional wave equation that focuses on wave propagation along a single axis. 

One-dimensional soundwaves can be represented by the following one-dimensional wave 

equation, 

𝜕2ψ

∂𝑥2
=

1

𝑣2

𝜕2𝜓

𝜕𝑡2
 (1) 

To specify a given wave, we define it by the following boundary conditions, 

𝜓(0, 𝑡) = 0 (2) 

𝜓(𝐿, 𝑡) = 0, (3) 

where there are fixed endpoints at 

𝑥 = 0 (4) 

𝑥 = 𝐿, (5) 

 

and the following initial conditions: 

𝜓(𝑥, 0) = 𝑓(𝑥) (6) 
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𝜕𝜓

𝜕𝑡
(𝑥, 0) = 𝑔(𝑥) (7) 

This is because when you pluck a guitar string, the string’s ends will never change elevation. A 

visual representation would look something like this: 

 

There are multiple solutions to this equation, such as the separation of variables solution, 

which uses a trial solution: 

𝜓(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) (8) 

Where 𝑋(𝑥) is a function of 𝑥 alone and 𝑇(𝑡) is a function of 𝑡 alone. If we take the double 

derivative of both 𝑋(𝑥) and 𝑇(𝑡), this leads to 

𝑇
𝑑2𝑋

𝑑𝑥2
=

1

𝑣2
𝑋

𝑑2𝑇

𝑑𝑡2
 (9) 

 

Figure 1: Graphical representation of a plucked string 𝑔(𝑥) with endpoints at 𝑥 = 0 and 𝑥 = 𝐿. In this 

representation, the string is plucked at the center point. 
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 With this in mind, let’s assume the following: 

1

𝑋

𝑑2𝑋

𝑑𝑥2
=

1

𝑣2

1

𝑇

𝑑2𝑇

𝑑𝑡2
= −𝑘2 (10) 

This gives us the solution for 𝑋, which is 

𝑋(𝑥) = 𝐶𝑐𝑜𝑠(𝑘𝑥) + 𝐷𝑠𝑖𝑛(𝑘𝑥) (11) 

If we rewrite (10), we can get 

1

𝑇

𝑑2𝑇

𝑑𝑡2
= −𝑣2𝑘2 = −𝜔2 (12) 

This gives us the solution for 𝑇, which is 

𝑇(𝑡) = 𝐸𝑐𝑜𝑠(𝜔𝑡) + 𝐹𝑠𝑖𝑛(𝜔𝑡), (13) 

where 

𝑣 =
𝜔

𝑘
(14) 

After setting the boundaries  

𝜓(0, 𝑡) = 𝜓(𝐿, 𝑡) = 0, (15) 

we get the following: 

𝐶 = 0 (16) 

𝑘𝐿 = 𝑚𝜋, (17) 

where 𝑚 is an integer. For a particular value of 𝑚, we can rewrite the equation as 

𝜓𝑚(𝑥, 𝑡) = [𝐸𝑚 sin(𝜔𝑚𝑡) + 𝐹𝑚 cos(𝜔𝑚𝑡)]𝐷𝑚sin (
𝑚𝜋𝑥

𝐿
) (18) 
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≡ [𝐴𝑚 cos(𝜔𝑚𝑡) + 𝐵𝑚 sin(𝜔𝑚𝑡)]sin (
𝑚𝜋𝑥

𝐿
) (19) 

With the following initial condition taken into consideration 

𝜓(𝑥, 0) = 0 (20) 

this results in 

𝐵𝑚 = 0, (21) 

so (19) becomes 

𝜓𝑚(𝑥, 𝑡) = 𝐴𝑚 cos(𝜔𝑚𝑡) sin (
𝑚𝜋𝑥

𝐿
) (22) 

Since the general solution is a sum of all possible values of 𝑚, the solution is 

𝜓(𝑥, 𝑡) = ∑ 𝐴𝑚 cos(𝜔𝑚𝑡) sin (
𝑚𝜋𝑥

𝐿
)

∞

𝑚=1

(23) 

under the remaining initial conditions listed in (6) and (7)[5]. 

 

III. Discretization 

 There is also a numerical solution to the one-dimensional wave equation, also known as 

discretization. Finite difference methods can be used to discretize this equation. This involves the 

Taylor series, which states that 

𝑢𝑛+1 = 𝑢(𝑥 + ∆𝑥) = 𝑢(𝑥) + 𝑢′(𝑥)∆𝑥 + 𝑢′′(𝑥)
∆𝑥2

2
+ 𝑢′′′(𝑥)

∆𝑥3

6
+ ⋯ (24) 

We can write a function 𝑓(𝑥) as a series 
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𝑓(𝑥) = ∑ 𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2

∞

𝑛=0

+ 𝑎3𝑥3 + ⋯ +𝑎𝑛𝑥𝑛, (25) 

where 

𝑎𝑛 =
𝑓(𝑛)(0)

𝑛!
 (26) 

We can rewrite this as 

𝑓(𝑥) = ∑ 𝑎𝑛𝑥𝑛 = 𝑓(0) + 𝑓′(0)𝑥 +
𝑓′′(0)

2
𝑥2 +

𝑓′′′(0)

6
𝑥3 + ⋯ 

∞

𝑛=0

(27) 

We can also use 𝛼 to explain this, where 

𝛼 1 = 𝑢𝑛−1 = 𝑢(𝑥𝑛 − ∆𝑥) = 𝑢(𝑥𝑛) + 𝑢′(𝑥𝑛)∆𝑥 +
𝑢′′(𝑥𝑛)

2
∆𝑥2 +

𝑢′′′(𝑥𝑛)

6
∆𝑥3 + ⋯ (28) 

𝛼2 = 𝑢𝑛 = 𝑢(𝑥𝑛) (29) 

𝛼 3 = 𝑢𝑛+1 = 𝑢(𝑥𝑛 + ∆𝑥) = 𝑢(𝑥𝑛) − 𝑢′(𝑥𝑛)∆𝑥 −
𝑢′′(𝑥𝑛)

2
∆𝑥2 −

𝑢′′′(𝑥𝑛)

6
∆𝑥3 − ⋯ (30) 

So, we can write the equation as 

𝑢′(𝑥) ≈ 𝛼 1𝑢𝑛−1 + 𝛼 2𝑢𝑛 + 𝛼 3𝑢𝑛+1 (31) 

Final 

 

IV. MatLab and Instrument Design 

Pitch is important in instruments like the guitar. Fortunately, the guitar’s mechanics are 

perfect for tuning. The guitar’s strings are labeled chronologically E, A, D, G, B, and E. The first 
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E plays the lowest-pitch note while the second E plays the highest-pitch note. In order for a 

guitar to function properly, the strings must play the correct notes[6]. 

 

We can use MatLab to simulate a plucked string. Consider a guitar string, where both 

ends are fixed at a height of 0. So the update rules for future(1) and future(n) can set the values 

to 0. We can simulate a plucked string with the following: 

 

In this snippet, the future time is set up so that it follows the discretization solution of the wave 

equation. However, instead of points being written as 𝑛 − 1, 𝑛, and 𝑛 + 1, it is written as 𝑛 − 2, 

𝑛 − 1, and 𝑛. We know that 

 

Figure 2: Code snippet for graphically and mathematically describing the one-dimensional wave equation, 

utilizing the Taylor series to calculate the future position of the string[7]. 
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𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥, (32) 

and that  

𝑢𝑥𝑥 = 𝛼1𝑢𝑛−1 +  𝛼2𝑢𝑛 + 𝛼3𝑢𝑛+1 (33) 

We can rewrite this as   

𝑢𝑥𝑥 =
𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1

(∆𝑥)2
, (34) 

but if we want to include the constant 𝑐, or in this case 𝑟, then this leads to 𝑟2 (𝑢𝑗−1
𝑛 −2𝑢𝑗

𝑛+𝑢𝑗+1
𝑛 )

(∆𝑥)2 . 

After canceling terms via substitution, we can isolate 𝑢𝑗
𝑛+1, where 

𝑢𝑛+1 = 𝑟2(𝑢𝑗−1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗+1
𝑛 ) (35) 

 

𝑟 =
∆𝑡

∆𝑥
 (36) 

This leads to our final result:  

𝑢𝑗
𝑛+1 = 𝑟2(𝑢𝑗−1

𝑛 + 𝑢𝑗+1
𝑛 ) + 2𝑢𝑗

𝑛(1 − 𝑟2) − 𝑢𝑛−1 (37) 

Final 

 

MatLab also includes a built-in tool that can simulate the actual sound of a plucked 

string, which follows a similar layout to the code above. 
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The code shown above can produce graphs where the length of the string is 0.65 meters with the 

sound playing for two seconds, which gives us this graph: 

 

 

 

 

 

 

Figure 3: An alternative version of the previous code snippet that plays a sound in MatLab when the program is 

run to mimic the sound of a plucked string given the required parameters and initial conditions. 
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However, we can turn this into a function that takes in user inputs for string length and duration 

as well as where the string is plucked to get other graphs, such as these: 

 

 

 

Figure 4: Recorded graph of a 0.65-meter string plucked at x = 0.33 meters with a duration of 2 seconds. The 

top graph shows the string length and the location of the string being plucked. The bottom graph shows a 

snippet of the generated sound waveform for a small amount of time. 
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Figure 5: Recorded graph of a 1-meter string plucked at x = 0.33 meters with a duration of 2 seconds. The top 

graph shows the string length and the location of the string being plucked. The bottom graph shows a snippet of 

the generated sound waveform for a small amount of time. 

 

Figure 6: Recorded graph of a 0.65-meter string plucked at x = 0.55 meters with a duration of 2 seconds. The 

top graph shows the string length and the location of the string being plucked. The bottom graph shows a 

snippet of the generated sound waveform for a small amount of time. 
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V. Error Analysis 

 It’s important to note that the one-dimensional wave equation is prone to compounding 

errors. Let’s consider the following: 

𝜕2𝑢

2𝑡2
 = 𝑘2

𝜕2𝑢

𝜕𝑥2
 (38) 

With this, we can also consider the following approximation: 

𝑢𝑗
𝑛−1 − 2𝑢𝑗

𝑛 + 𝑢𝑗
𝑛+1

(∆𝑡)2
≈ 𝑘2 (

𝑢𝑗−1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗+1
𝑛

(∆𝑥)2
) (39) 

After canceling the deltas, and changing the 𝑘 to 𝑟 to fit the context, we get  

𝑢𝑗
𝑛−1 − 2𝑢𝑗

𝑛 + 𝑢𝑗
𝑛+1 ≈ 𝑟2(𝑢𝑗−1

𝑛 − 2𝑢𝑗
𝑛 + 𝑢𝑗+1

𝑛 ) (40) 

To find the error, we can isolate the 𝑢𝑗
𝑛+1 to one side of the equation. 

𝑢𝑗
𝑛−1 ≈ 𝑟2(𝑢𝑗−1

𝑛 − 2𝑢𝑗
𝑛 + 𝑢𝑗+1

𝑛 ) − 𝑢𝑗
𝑛+1 + 2𝑢𝑗

𝑛 (41) 

This gives us 

𝑢(𝑥𝑗 , 𝑡𝑛+1) = 𝑟2(∆𝑥2𝑢′′)𝑗
𝑛 + (

∆𝑥4

12
𝑢(4))𝑗

𝑛 (42) 

When we include the second-order derivative, we get the error 𝑒: 

𝑢𝑗−1 − 2𝑢𝑗 + 𝑢𝑗+1

∆𝑥2
− 𝑢𝑥𝑥(𝑥𝑗 , 𝑡𝑛) = 𝑒 (43) 

This leads to 

(𝑢𝑗 − ∆𝑥𝑢𝑗
′ +

∆𝑥2

2 𝑢𝑗
′′ −

∆𝑥3

6 𝑢𝑗
′′′ + ⋯ ) − 2𝑢𝑗 + (𝑢𝑗 + ∆𝑥𝑢𝑗

′ +
∆𝑥2

2 𝑢𝑗
′′ +

∆𝑥3

6 𝑢𝑗
′′′ + ⋯ ) − 𝑢𝑥𝑥

(∆𝑥)2
= 𝑒(44) 

We can simplify this to the following: 
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∆𝑥4𝑢𝑗
(4)

4! +
∆𝑥4𝑢𝑗

(4)

4!
(∆𝑥)2

= 𝑒 (45)
 

Where 

𝑒 = (∆𝑥2)𝑢𝑗
(4)

(
1

12
) (46) 

This gives us 

𝑒~𝑂(∆𝑥2) (47) 

 

Final 

 

VI. Conclusion 

 There’s more mathematics involved in sound than one may think. Although a soundwave 

could be seen as a sine wave on the surface, they can also be represented as calculus equations 

with first and second-order derivatives and Taylor series. MatLab serves as an incredible tool to 

visualize this and even simulate sounds to resemble a plucked string. Perhaps in the future, many 

other instruments can be simulated like this. 
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