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Numerical and Analytic Analysis of the Heat Equation 

I. Introduction 

 The heat equationis perhaps the most fundamental tool for modeling distribution of heat 

in an object. As such, it has become familiar and widely applicable in many scientific fields. In 

addition to its modeling uses, for example, it is of interest to mathematicians as a prototypical 

example of a parabolic partial differential equation. In other fields, it is used to study or solve 

other partial differential equations, such as the Black-Scholes model in financial mathematics. 

Its relative simplicity and specificity also qualify it as an excellent subject for a novice’s foray 

into partial differential equations. Because its basic concepts are intuitive and relatively clear to 

understand.  The heat equation represents a simple but useful case study that can provide insight 

into basic aspects of partial differential equations that can then be generalized to more 

complicated equations.  

The heat equation expresses the change in the temperature as a function of time and one spatial 

dimension given by �(�, �) in terms of the function’s partial derivatives. The heat equation has 

the form 

�� = �

 

or, equivalently,  

ℒ(�) =  �

 − �� = 0. 
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II. Derivation 

 The heat equation comes about as a consequence of Fourier’s law. Fourier proclaimed in 

TheorieAnalytique de la Chaleur that the unit rate of flow of heat energy q is proportional to the 

gradient of the temperature u, 

� =  −� ∗ ∇�, 
Where k is called the conductivity of the system. In one dimension,  

∇� =  �� �� = �
,  
Hence the equation becomes  

� =  −��
. 
Additionally, the change ∆Q of an object’s internal energy can be given by means of the formula  

∆� = ��∆�, 
Where the constant of proportionality c is called the object’s capacity, ρ is the object’s density, 

and ∆u is the change in temperature. Given an initial condition of zero energy at zero 

temperature, this then becomes  

� = ���. 
If we consider (�, �) to represent a point in the Cartesian product space of time and space, we 

consider a rectangle  

� = {(�, �) ∶ � − ∆� ≤ � ≤ � + ∆� and � − ∆� ≤ � ≤ � + ∆� 
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Then the increase in internal energy in a small spatial region 

� − ∆� ≤ � ≤ � + ∆� 

over the small time interval   � − ∆� ≤ � ≤ � + ∆� 

is given by 

�� " {�(�, � + ∆�) − �(�, � − ∆�)# $�
%∆


&∆
 = ' ����(  $� $� =  ' �) $� $�( . 

where the fundamental theorem of calculus is employed. In the absence of work, heat sources, or 

heat sinks, this change is wholly accounted for by the total flow of heat energy into the region 

[� − ∆�, � + ∆�], which is given by 

� " +���� (� + ∆�, �) − ���� (� − ∆�, �), $��%∆�
�&∆� = ' �-���-  $� $�( =  ' �.. $� $�(  

according to Fourier’s law. By conservation of energy,  

' ���)( − ��.. $� $� = 0 

for any ∆� and ∆�. By the fundamental lemma of calculus of variations, we have that  

���� − ��

 = 0, 
thus,  

�� = ��� �

, 
where the constant    / = 012 
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is the thermal diffusivity of the material. If we set � = /� and relabel � as �, we have the classical 

equation  

�

 − �� = 0. 
III. Difference Quotient 

 We proceed in our solution to examine the heat equation using difference quotients for 3� 

and 3

. Using the second-order central difference quotient with respect to space to represent 

3

 and the first order forward difference quotient with respect to time to represent 3�, we write 

30%4,5 − �0,5∆� = 30%4,5&4 − 230%4,5 + 30%4,5%4(∆�)-  

(Note that we choose to center our central difference quotient about the time 30%4, as we have 

shown that this will yield a stable solution, the analysis of which is in the following section) 

We now say 7 = ∆�(∆
)8 for the purposes of visually simplifying the equation, which then becomes 

30%4,5 − �0,5 = 730%4,5&4 − 2730%4,5 + 730%4,5%4 

30,5 = −730%4,5&4 + (1 + 27)30%4,5 − 730%4,5%4. 
 Now in this form, we can examine this equation for all values of : from 1 to ; to 

construct a profile of the temperature of the object along its entire length. This can in fact be 

represented by a matrix equation, thusly: 
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⎣⎢⎢
⎢⎢⎡
1 + 27 −7 0 0 ⋯ 0−7 1 + 27 −7 0 ⋯ 00 −7 1 + 27 −7 ⋯ 0⋮ ⋱ ⋱ ⋱ ⋯ ⋮0 ⋯ 0 −7 1 + 27 −70 ⋯ 0 0 −7 1 + 27⎦⎥⎥

⎥⎥⎤
⎣⎢⎢
⎢⎢⎢
⎡ 30%4,430%4,-30%4,E⋮30%4,F&430%4,F ⎦⎥⎥

⎥⎥⎥
⎤

=
⎣⎢⎢
⎢⎢⎢
⎡ 30,430,-30,E⋮30,F&430,F ⎦⎥⎥

⎥⎥⎥
⎤
 

 Note that the difference quotient form breaks for the 1
st
 and ;th

 rows, as 30%4,5&4 and 

30%4,5%4are not properly evaluable in these respective cases. One option for alleviating this 

problem is to factor in the boundary conditions for the equation: 

−730%4,G + (1 + 27)30%4,4 − 730%4,- = 30,4 
→ (1 + 27)30%4,4 − 730%4,- = 30,4 + I730%4,GJ = 30,4 + 73K , 

Where 3K represents the boundary condition at the left. Similarly,  

−730%4,F&4 + (1 + 27)30%4,F − 730%4,F%4 = 30,F 
→ −730%4,F&4 + (1 + 27)30%4,F = 30,F + I730%4,F%4J = 30,F + 73( , 

 With 3( the boundary condition at the right. For the purposes of our model, the boundary 

conditions of the plate do not change over time.  Taking this into consideration, our matrix 

equation becomes: 

⎣⎢⎢
⎢⎢⎡
1 + 27 −7 0 0 ⋯ 0−7 1 + 27 −7 0 ⋯ 00 −7 1 + 27 −7 ⋯ 0⋮ ⋱ ⋱ ⋱ ⋯ ⋮0 ⋯ 0 −7 1 + 27 −70 ⋯ 0 0 −7 1 + 27⎦⎥⎥

⎥⎥⎤
⎣⎢⎢
⎢⎢⎢
⎡ 30%4,430%4,-30%4,E⋮30%4,F&430%4,F ⎦⎥⎥

⎥⎥⎥
⎤

=
⎣⎢⎢
⎢⎢⎢
⎡30,4 + 73K30,-30,E⋮30,F&430,F + 73(⎦⎥⎥

⎥⎥⎥
⎤
 

We then multiply both sides by the inverse of our coefficient matrix to get a form that can 

generate the values of the equation at each step from the previous. 
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⎣⎢⎢
⎢⎢⎢
⎡ 30%4,430%4,-30%4,E⋮30%4,F&430%4,F ⎦⎥⎥

⎥⎥⎥
⎤

=
⎣⎢⎢
⎢⎢⎡
1 + 27 −7 0 0 ⋯ 0−7 1 + 27 −7 0 ⋯ 00 −7 1 + 27 −7 ⋯ 0⋮ ⋱ ⋱ ⋱ ⋯ ⋮0 ⋯ 0 −7 1 + 27 −70 ⋯ 0 0 −7 1 + 27⎦⎥⎥

⎥⎥⎤
&4

⎣⎢⎢
⎢⎢⎢
⎡30,4 + 73K30,-30,E⋮30,F&430,F + 73(⎦⎥⎥

⎥⎥⎥
⎤
 

IV. Stability 

 For any differential equation3F,L,M… examined with respect to n, we say that the function 

value at some future point n+1 is equal to some factor times the value at the current pointn- that 

is, 

3F%4 = O ∗ 3F 

with G being the growth factor of the equation. In particular, this applies to the error function e: 

PF%4 = O ∗ PF 

In this case, if the absolute value of G is less than 1, we say that the equation is stable, as the 

error decreases. In order to assess when this is true for our equation of two variables t and x, we 

say that  

3F,Q = P50
RST 

Then, advancing with respect to n, we say that the advanced term can be found by adding the 

finite space representation of the equation to the current term:  

3F%4,Q = 3F,Q + ∆�(3F,Q%4 − 3F,Q&42∆� ) 

Then, making a substitution with respect to our earlier equation, this becomes 
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O3F,Q = 3F,Q + ( ∆�2∆�)(3F,Q%4 − 3F,Q&4) 

OP50
R = P50
R + ( ∆�2∆�)(P50(
%∆
) − P50(
&∆
)) 

O = 1 + U∆�∆�V WP50∆
 − P&50∆
2 X 

O = 1 + U∆�∆�V :(sin(�∆�)) 

Since stability necessitates that the absolute value of G be less than 1, we also know that the 

absolute value of G times its complex conjugate must also be less than 1: 

|O ∗ O∗| < 1 

]U1 + ∆�∆� : ∗ sin(�∆�)V U1 − ∆�∆� : ∗ ^: ;(�∆�)V] < 1 

_1 + U∆�∆� : ∗ sin(�∆�)V-_ < 1: 
This is never true- thus, this explicit solution is never stable. 

However, this is not the only solution we can use to evaluate our function, if we change our 

stencil by choosing a different reference point, then the results may change in response. 

Suppose we select the future point 3F%4,Q as our stencil instead of 3F,Q. Then, we have 

3F%4,Q = 3F,Q + ∆� ∗ U3F%4,Q%4 − 3F%!,Q&42∆� V 

OP50
R = P50
R + U∆�∆�V (OP50(
%∆
) − OP50(
&∆
)2 ) 
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O = U∆�∆�V O WP50∆
 − P&50∆
2 X + 1 

O U1 − U∆�∆�V : ∗ sin(�∆�)V = 1 

O = 1b1 − b∆�∆
c : ∗ ^: ;(�∆�)c 

|O ∗ O∗| < 1 

d 1U1 + b∆�∆
 ∗ ^: ;(�∆�)c-Vd < 1 

This equation is true when the denominator is greater than 1, which is true for all values of t and 

x. Hence, this solution is always stable. 

V. Analytic Solution 

 While numerical solutions given by these sorts of matrices are guaranteed to be accurate, 

the computational time required for the generation of matrices when n becomes very large grows 

increasingly prohibitive. As such, another option for analyzing the behavior of this equation is to 

use analytical approaches to examine an approximation accurate to within some degree of error. 

In particular, we can utilize a Fourier series approximation to examine the behavior of our PDE 

if we decompose it into three ODEs. 

For this derivation, let us assume a plate, linearized to have sides of length 1 with boundaries of  

�(0, e, �) = �(1, e, �) = �(�, 0, �) = �(�, 1, �) = 0 
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And an initial function f(�, e) that gives the temperature distribution at � = 0. 
Let us assume that our temperature function decomposes into three functions, one with respect to 

x,one with respect to y, andone with respect to t, as follows: 

3(�, e, �) = g(�)h(e)i(�) 

Converting to the form of the heat equation, we have 

ij(�)g(�)h(e) = i(�)gjj(�)h(e) + i(�)g(�)h′′(e) 

And consequently, 

gjj(�)g(�) + hjj(e)h(e) = ij(�)i(�)  

For a function purely of time and one purely of space to be equal to one another across all values 

of x, y, and t is, reasonably, only possible when both sides of the equation are equal to some 

constant C. We call this constant l = −m- − n- by convention. Then, applying our original 

PDE setup yields   

ij(�) + (m- + n-) i(�)  =  0 and gjjh + hjjg + m- + n- = 0 

for our two ODEs. Considering the second equation, we write it as 

− Whjjh + m-X = gjjg + n- 

Again, we say that both sides are equal to some constant o-, since the left side is solely a 

function of y and the right solely a function of x. This then gives us 
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hjjh + m- = −o-and gjjg + n- = o- 

For which we can set up the standard-form equations 

hjj + (−m- + o-)h = 0  andgjj + (−n- − o-)g = 0 

Now, let (−m- + o-) = p- and (−n- − o-) = �-. We can now solve the equations for X and Y: 

g(�) = q^:;(p�) + r�s^(p�) 
h(e) = l^:;(�e) + 7�s^(�e) 

And, looking back to the equation for time, we find that  

i(�) = iGP&t8&u8
 

Thus, our equation for heat can be written as 

3(�, e, �) = iGP(&t8&u8)�IO^:;(p�) + v�s^(p�)JIl^:;(�e) + 7�s^(�e)J. 
From here, we can utilize our boundary conditions: 

0 =  3(0, e, 0)  =  vIl^:;(�e) + 7�s^(�e)J  ⇒  v =  0 
0 =  3(�, 0,0) =  7IO^:;(p�) + v�s^(p�)J  ⇒  7 =  0 

At this point, we find it easier to combine our constants into a single term: 

3(�, e, �) = PI&t8&u8J�q^:;(p�)sin (�e) 

Now, resuming applying the boundary conditions, we have that 

3(1, e, 0) = q^:;(p) sin(�e) = 0 and 3(�, 1,0) = q^:;(p�) sin(�) = 0 
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Then p and � = xy and zy respectively, where x, z = 1,2,3 …  ; 

Thus, we find that our coefficient A, and indeed our entire equation, depends on the values we 

choose for L and K; 

3K,�(�, e, �) = P((K�)8%(��)8)�qK,� sin(xy�) sin (zye) 

Finally, then,  

3K,�(�, e, 0) = qK,� sin(xy�) sin(zye) 

And if we take the sums of 3K,�(�, e, 0) across all x, z, 

� � 3K,�(�, e, 0) =  � � qK,� sin(xy�) sin(zye) = f(�, e) = 3G
�

K�G
�

��G
�

K�G
�

��G  

Which is our initial heat distribution. 

From here, we can begin to construct our Fourier series approximation. Take 

, 0

, 0 , 0

sin( ) sin( )sin( ) sin( )
L K

L K L K

n x A L x K y n x Uπ π π π

∞ ∞

= =

=   

Then, converting both sides into integrals gives us 

1 1

, 0
0 0

1
1

0
0

1 1
1

0
0 0

sin( ) sin( )sin( ) sin( )

cos( )sin( )
sin( ) cos( )cos( )

cos( )sin( ) sin( )cos( )
sin( ) sin( )sin( )

L K
n x A L x K y dx n x U dx

n x L x L
A K y n x L x dx

n n

n x L x L n x L x L
A K y n x L x dx

n n n n

π π π π

π π
π π π

π π

π π π π
π π π

π π π π

=

 −
 + 

  

 −
 + + 

 

 





1
2

0
sin( ) ( ) sin( )sin( )

L
A K y n x L x dx

n
π π π

π

 
 

  

 
   


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If ; ≠ x, this is zero always; hence, we presume ; = x. Then we have 

 

 

 

 

We then perform a similar technique with respect to y: 

, 0

, 0 , 0

1 1

, 0
0 0

1
1

0
0

1

0

sin( ) sin( )sin( ) sin( )

sin( ) sin( )sin( ) sin( )

cos( )sin( )
sin( ) cos( )cos( )

cos( )sin( )
sin( )

L K

L K L K

L K

m y A L x K y m y U

m y A L x K y dy m y U dy

m y K y K
A L x m y K y dy

m m

m y K y K
A L x

m

π π π π

π π π π

π π
π π π

π π

π π
π

π

∞ ∞

= =

=

 =

 −
 + 

  

−
 +

 

 



1
1

0
0

1
2

0

sin( )cos( )
sin( )sin( )

sin( ) ( ) sin( )sin( )

m y K y K
m y K y dy

m m m

K
A L x m y K y dy

m

π π
π π

π π π

π π π

π

  
+  

    

 
   




Then once again, we let n = z; 

1
2 2

0

1

2 0

1

0
0

1
sin( ) ( ) sin ( )

1
sin( )* 1 cos(2 )

2

1
sin( ) sin( )

2

A L x K y dy

A L x K y dy

A L x K y U dy

π π

π

π π

π

π π

 
   

 −

 =







 

Combining these two gives us that  

1
2 2

0

1

2 0

1

0
0

1
sin( ) ( ) sin ( )

1
sin( )* 1 cos(2 )

2

1
sin( ) sin( )

2

A K y L x dx

A K y L x dx

A K y L x U dx

π π

π

π π

π

π π

 
   

 −

 =









13 

 

1 1 1 1

,

0 0

0 0 0 0

1 1

, 0

0 0

sin( )sin( ) sin( )sin( )
4

4 sin( )sin( )

L K

L K

A
n x m y U dydx L x K y U dydx

A L x K y U dydx

π π π π

π π

= =

 =

   

 
 

Then, finally, we have our complete Fourier series in terms of x and z: 
2 2

2 2

(( ) ( ) )

,

, 0

1 1

(( ) ( ) )

0

, 0 0 0

( , , ) sin( ) sin( )

sin( )sin( )( sin( )sin( ) )

L K t

L K

L K

L K t

L K

U x y t e A L x K y

e L x K y L x K y U dydx

π π

π π

π π

π π π π

∞

+

=

∞

+

=

=

=



  
 


