
*
 Mr. Brian England as Supervisor

**
 Undergraduate Honors Student, Computer Science (BS)

Calculus III Applied to Computer Graphics

Vector Graphics for Three-Space Perspective and Transformation

Presented for Calculus III Honors Research Project at Arizona State University
*

December 5
th

, 2014

Erick Ramirez Cordero
**

Symbols

W = Origin of world coordinate system (3D) S = Origin of screen coordinate system (2D)

Wx = x-axis for world coordinates SX = x-axis of screen coordinates

Wy = y-axis for world coordinates SY = y-axis of screen coordinates

Wz = z-axis for world coordinates SZ = z-axis of screen coordinates

E = Origin of eye coordinate system (3D) d = distance between E and S

Ex = x-axis for eye coordinates ρ = distance between E and W

Ey = y-axis for eye coordinates V = viewing transformation matrix

Ez = z-axis for eye coordinates R = rotation matrix about an arbitrary axis

2

Figure 1.1. An image of SAGE

displaying vectors indicating the

locations of aircraft.

I.Introduction and History of Computer Graphics

 One of the earliest forms of computer graphics were vector graphics, images and models

created by implementing mathematical formulas based on vectors. Compared to bitmap graphics

(or raster graphics), vector graphics allowed greater detail and quality that would be lost

normally by resizing and manipulating bitmap graphics. Some of the earliest uses of computer

graphics include the Semi-Automatic Ground Environment (SAGE) Air Defense System, an

early computer game called Tennis for Two, and the movie Tron. Modern applications of

vectored graphics are implemented through coding such as Scalable Vector Graphics (SVG) or

through other methods in Java, C, C++, etc.

A. Semi-Automatic Ground Environment (SAGE) Air Defense System

One of earliest uses of vectors in computer graphics was

in the SAGE project.SAGE (Semi-Automatic Ground

Environment) was a United States Air Force project started in

1951 and implemented in 1963 as an air defense system capable

of detecting aircraft. In SAGE, vectors were used as displays to

detect aircraft direction and speed relative to geographical

locations.

During the SAGE project, the light pen was also invented for user input. By using vectors

in order to keep track of the moving pen, the computer could plot the points it crosses and adjust

accordingly. The creation of the light pen would later give way to its applications in computer

animation and CAD processes.
1

3

Figure 1.2. 50
th

 Anniversary

Recreation of Tennis for Two

Figure 1.3. Light Cycle

sequence created by Triple-I

for Tron

B. Tennis for Two

 One of the predecessors to video games was William

Higinbotham’s Tennis for Two.Tennis for Two is a 2D tennis game

played with a button and a dial for trajectory on an oscilloscope

screen created in Brookhaven National Laboratory. Introduced in

October 18
th

, 1958, this game predates commercialized video

games such as Pong.

 Higinbotham’s original inspiration for creating this game came from him reading the

instruction manual for the oscilloscope, which described various examples such as a bullet and

bouncing ball. After first introducing his game at a visitors’ event, Higinbotham reflected that “it

might liven up the place to have a game that people could play, and which would convey the

message that our scientific endeavors have relevance for society.”
2

C. Tron

 One of the first major uses of computer graphic images

(CGI) in cinema was Tron in 1982. Walt Disney had partnered with

various computer graphics companies such as Information

International Inc. (Triple-I) and the Mathematic Applications Group

Inc.(MAGI) in order to create various objects and backgrounds

such as the light cycle and The Grid, the virtual world of the movie.

While most of the computer graphics were backgrounds, the movie contained a scene of pure

CGI for 15 minutes, a feat unheard of at the time. Since the concept of computer graphics was

still new in cinema, the styles and skill sets of the companies were widely different and thus

implemented differently. For instance, Triple-I used a combination of basic shapes in order to

4

Figure 1.4. Comparison

between Bitmap (Left) and

Vector (Right) Graphics

animate them and create action sequences that did not require great amounts of detail, known as

SynthaVision. MAGI, on the other hand, would trace a schematic onto a tablet to recreate as a

series of polygons for a detailed 3D model. While not as fluid as Triple-I, MAGI’s process

allowed for greater depth to be created in their objects and backgrounds and would later be

refined into the standard process utilized in cinema in the present day. While not a great success

financially, Tron paved the way for greater use of CGIin cinema, television, and other forms of

media.
3

D. Scalable Vector Graphics (SVG)

Vectored images are created through mathematical

equations and expressions, as opposed to Bitmap graphics, to

allow proper scaling for a clear image at any size.One of the

major forms of programming vector images is the usage of

Scalable Vector Graphics (SVG). Other forms of vector

coding/drawing such as the Vector Markup Language (VML) were also created, but SVG is the

most commonly used by browsers and multimedia software.
4

 Scalable Vector Graphics is an Extensible Markup Language (XML) used in order to

create vector images by either defining all the elements of the graphic (i.e. lines, shapes, colors)

and/or modifying raster/bitmap images. Compared to other languages, SVG differs greatly

depending on the User’s process and goals. For instance, SVG images can include other images,

text, can be interactive and dynamic through scripting, and can be utilized for other purposes.
5

5

Figure 2.1. A Cube in 3D

Perspective

II.Three-Space Perspective

 Three-dimensional perspective in computer graphics is

created in two major steps: a viewing transformation and a

perspective transformation.In the viewing transformation, the

program translates the original coordinates, referred to

throughout this report as the “world coordinates”, into a set of

“eye coordinates”: a second set of 3D coordinates representing the cube on the other side of the

screen. In the perspective transformation, the program takes the both the world coordinates and

the eye coordinates created in the first step and creates vectors intersecting a plane that

represents the screen of the computer, known as the viewing plane. By doing so the 3D

coordinates are translated into a set of 2D coordinates plotted and connected on the screen to

create a wire-frame model of a cube. These 2D coordinates are referred to as “screen

coordinates” as they are the points on the viewing plane intersecting the vectors.
6

A. Viewing Transformation

 The viewing matrix utilized for creating the eye coordinates is composed of three steps in

itself: creating the origin for the eye coordinate system, rotating the coordinate system around the

Wz -axis, and rotating the coordinate system around the Wx -axis. In order to rotate the world

coordinate system, points are converted from Cartesian coordinates to spherical coordinates:

sin()cos()Wx ρ ϕ θ= sin sinWy ρ ϕ θ= cosWz ρ ϕ=

After converting, the origin is shifted from the world coordinate system to the location where the

eye coordinate grid will be created.The coordinate system is then rotated about the Wz -axis by

6

the angle
2

π
θ
 

− + 
 

 , creating the negative z-axis. Finally, the coordinate system is rotated about

the Wx -axis by ϕ− , as opposed to justϕ in order to achieve the proper rotation.

1 0 0 0

0 1 0 0

0 0 1 0

1E E E

T

x y z

 
 
 =
 
 
− − − 

sin cos 0 0

cos sin 0 0

0 0 1 0

0 0 0 1

z
R

θ θ

θ θ

− − 
 

− =
 
 
 

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

x
R

ϕ ϕ

ϕ ϕ

 
 

− =
 
 
 

The three matrices T, Rz, and Rxcan be multiplied into a single viewing matrix V that can be

multiplied with the matrix holding the 3D coordinates. By doing so, the set of eye coordinates

are created for use in the perspective transformation. On a side note, this transformation creates a

negative z-axis in order to retain a right-handed coordinate system.
6

B. Perspective Transformation

 The 2D coordinate system that will be used as the viewing plane is represented by

Ez d=− , where d is the distance between the eye coordinate origin E and the origin S. These 2D

coordinates about the origin S shall be referred to as “screen coordinates”. The Ex - and Ey - axis

of the eye coordinate system are parallel to the SX - and SY - axis of the viewing plane, and

when comparing the vectors connecting the two coordinate systems, the following comparisons

are drawn:

S E

E

X x

d z
=

−
 E

S

E

x
X d

z

 
= −  

 
 E

S

E

y
Y d

z

 
= −  

 

sin cos cos sin cos 0

cos cos cos sin sin 0

0 sin cos 0

0 0 1

z x
V TR R

θ ϕ θ ϕ θ

θ ϕ θ ϕ θ

ϕ ϕ

ρ

− − 
 

− = =
 
 

− 

7

class Point2D

{

 float x, y;

 Point2D(float x, float y)

 {

 this.x = x;

 this.y = y;

 }

}

Figure 2.2. A code snippet of the class

Point2D, where 2D coordinates are stored for

use in arrays.

Using these equations, the screen coordinates to be connected and rendered on screen are

derived.
6

C.A Cube in Perspective and Vector Representation

CubePers.java is an example program in Leen Ammeraal’s and Kang Zhang’s textbook

Computer Graphics for Java Programmers. In CubePers.java, a cube is drawn in perspective

through Java by utilizing a viewing transformation and perspective transformation on a set of 3D

coordinates representing the cube. The program then displays the cube in a GUI for the User to

see as a wire-frame model.

Vectors and matrices in this program, along

with the other programs discussed, are created by

using arrays and data types for storing coordinatesin

order to calculate them more efficiently in code. The

classes Point2D and Point3D serve as a customized

data types for 2-D Coordinates and 3-D coordinates

respectively. By creating arrays with Point2D and

Point3D as data types, the result creates matrices for the separate points as opposed to the linear

format of generic arrays. The custom array can then be treated as a matrix in calculating new

coordinates, drawing lines to form the object, and rotating the object it composes.
6

III.Rotations in Three-Space

 The type of translation utilized by the programs created through this research is a rotation

about an arbitrary axis predetermined in code. Rotation occurs in a program before the object

goes through the viewing and perspective transformations by multiplying the world coordinates

with the rotation matrix. The rotation matrix itself is complex as it is created by multiplying

8

Figure 3.1. Two cubes rotating on their own

arbitrary axis

static Point3D rotate(Point3D p)

 {

 return new Point3D

(p.x * r11 + p.y * r21

+

p.z * r31 + r41,

p.x * r12 + p.y * r22 +

p.z * r32 + r42,

 p.x * r13 + p.y * r23 +

p.z * r33 + r43);

 }
Figure 2.3. A code snippet of the method rotate, a

method that multiplies a coordinate by the rotation

matrix.

multiple other matrices relating to a rotationα about vector v extending from the origin. The

arbitrary axis and points to be shifted about the axis are translated to this vector v with spherical

coordinates and shifted back to the original world coordinate grid with their rotation intact. To

create the rotation matrix R, the inverse rotation matrices
1

zR
−

 and
1

y
R

−
, the rotation matrix vR

about the vector v, and the actual rotation matrices y
R and zR are all multiplied in that specific

order.To complete the rotation matrix, the points have to be translated to the vector v before the

rotation matrix is applied and returned to their new position after the rotation through the usage

of a transformation matrix T. The full derivation of the rotation matrix is in Appendix A.

 Instead of having the program go

through the task of multiplying all of these

matrices every time a rotation occurs, the

coordinates are instead multiplied by the

appropriate final rotation matrix equations 11r

to 43r . This calculation occurs in the method

rotate within the class Rota3D.
6

A.Two Cubes Rotating

 CubRot2.java is another example program

from Ammeraal’s and Zhang’s textbook Computer

Graphics for Java Programmers. By combining the

ideas from rotations and three-dimensional

perspectives, this program creates two cubes next to each other that rotate along their own axis.

9

Figure 4.1. Chart representation of the code for the program

rotating a sword in Three-Space

 The program itself is essentially a modified version of the previous example program

demonstrating a cube in perspective. The modifications include an additional cube and a timer.

However, the program also includes an additional class, Rota3D, which applies the rotation to

the world coordinate points before the viewing transformation and perspective transformation

takes place. The Point3D class in charge of storing the 3D coordinates also requires an additional

constructor in order to convert and store the 3D coordinates rotated back into the compatible data

type.
6

IV.A Sword with Three Space Perspective and Rotation

By studying the programs CubePers.java and CubRot2.java, I created a program named

ThreeSpaceSwordRotation.java which rotates a wire-frame model of a basic sword about an

arbitrary axis for as long as the program is running.

The program begins by

generating the Graphical User

Interface (GUI) for the object and

detecting the center of the GUI. A

timer also begins where every time

about 20 milliseconds pass by, the

angle alpha in which the rotation

from the original world coordinates

were located is increased by 0.01

degree.

The original world coordinate matrix that composesthe object, a sword, is first rotated in

the Rota3D class by triggering the method Obj.rotateSword (alpha). An arbitrary axis is formed

10

by two pre-chosen coordinates, along with the degree variable alpha, and is entered in the

method Rota3D.initRotate (). Next, a loop from the first coordinate to the last coordinate occurs

in order to have every coordinate pass through the method Rota3D.rotate (s[i]), s[i] representing

each starting world coordinate within the matrix.

After being rotated, the method Obj.eyeAndScreen () occurs, causing the viewing

transformation and perspective transformation. The method Obj.initPersp () defines the set of

variables representing the viewing transformation matrix to be multiplied by the set of world

coordinates, then the method Obj.eyeAndScreen () does the actual multiplication and utilizes the

equations for perspective transformation in order to create a new set of 2D coordinates in another

array vScr [i] with the Point2D class. From there the previous rendered model is erased and the

new, rotated model is rendered. The program cycles through this process until the user exits the

program.

V. Conclusion

 Vector graphics can be applied to several applications due to their images and models

coming from vector equations. Due to the images being rendered by vectors, the detail in images

can be retained when resizing and manipulating them unlike bitmap graphics. Early applications

of computer and vector graphics include the Semi-Automatic Ground Environment (SAGE) Air

Defense System, the early computer game Tennis for Two, and the movie Tron. Modern

applications of vectored graphics are implemented through coding libraries such as Scalable

Vector Graphics (SVG) and other languages such as Java.

 In Java, perspective in three-space is created through a viewing transformation, a viewing

matrix created by rotating the original, world coordinates through the use of spherical

coordinates. From there, a perspective transformation completes the 3D perspective by using

11

Figure 5.1. Images of the final program: A

sword rotating about an arbitrary axis in

Three-Space

vectors and an intersecting viewing plane. Rotations in three-space also utilize spherical

coordinates and can occur over a variety of axis. A rotational matrix created through a variety of

individual rotations rotate the world coordinates

before perspective and the model is rendered.

 Through researching thedescribed subjects, as

well as studying the various example programs and

snippets of code analyzed in Sections II.C and III.A,

I created a program that creates a basic wire-frame

model of a sword, rotates the sword about an

arbitrary axis, and renders the rotating model in

three-space. Through the use of a timer, the program

deletes the previous model and creates a new model

with the next rotation every 20 milliseconds. The

source code for this program, known as

ThreeSpaceSwordRotation.java, can be found in

Appendix B.

12

Appendix A. Derivation of the Rotation Matrix

 The actualrotation matrix is complex as the matrix is created by multiplying multiple

individual rotation matrices. During the programs explained in Sections III.A and IV, a timer

increments an angleα to rotate the vector v through the origin W. The inverse rotation matrices

1

zR
−

 and
1

y
R

−
 are utilized to rotatethe world coordinates about the angles ϕ andθ used in the

spherical coordinates, respectively, in order to get vector v to line up with the z-axis of the world

coordinates. The rotation matrix vR then occurs about the vector v lined up with the Wz axis,

utilizing the angleα . The rotation matrices y
R and zR then returns the rotated coordinates to the

original world coordinate system. Since the actual elements of the rotation matrix become larger

and complex due to the spherical coordinates utilized, they are represented by their placement in

the matrix (11 to 43) later on in the report and in the final program’s code.

1

cos sin 0

sin cos 0

0 0 1

z
R

θ θ

θ θ−

− 
 

=  
  

1

cos 0 sin

0 1 0

sin 0 cos

y
R

ϕ ϕ

ϕ ϕ

−

 
 

=  
 − 

cos sin 0

sin cos 0

0 0 1

v
R

α α

α α

 
 

= − 
  

cos 0 sin

0 1 0

sin 0 cos

y
R

ϕ ϕ

ϕ ϕ

− 
 

=  
  

cos sin 0

sin cos 0

0 0 1

z
R

θ θ

θ θ

 
 

= − 
  

13

 Multiplying the five matrices in that order result in the following rotation matrix (with an

extra row and column added for later):

11 12 13

21 22 231 1

31 32 33

0

0

0

0 0 0 1

z y v y z

r r r

r r r
R R R R R R

r r r

− −

 
 
 = =
 
 
 

2 2 2 2

11 cos (cos cos sin) cos sinr θ α ϕ ϕ α θ= + +

2

12 sin cos (1 cos)sin cos sinr α ϕ α ϕ θ θ= + −

13 sin (cos cos (1 cos) sin sin)r ϕ ϕ θ α α θ= − −

2

21 sin cos sin (1 cos) sin cosr ϕ θ θ α α ϕ= − −

2 2 2 2

22 sin (cos cos sin) cos cosr θ α ϕ ϕ α θ= + + 23 sin (cos sin (1 cos) sin cosr ϕ ϕ θ α α θ= − +

31 sin (cos cos (1 cos) sin sin)r ϕ ϕ θ α α θ= − + 32 sin (cos sin (1 cos) sin cos)r ϕ ϕ θ α α θ= − −

2 2

33 cos sin cosr α ϕ ϕ= +

To complete the rotation matrix, an additional translation is needed from the arbitrary

axis to the vector v about the origin and back to the arbitrary axis after the rotation is complete,

represented by a matrix T:

11 12 1311 12 13

21 22 2321 22 231

31 32 3331 32 33

41 42 43

1 0 0 0 1 0 0 0 00

0 1 0 0 0 1 0 0 00

0 0 1 0 0 0 1 0 00

1 1 10 0 0 1x y z x y z

r r rr r r

r r rr r r
R T RT

r r rr r r

a a a a a a r r r

−

      
      
      = = =
      
      
− − −         

41 11 21 31x x y z
r a a r a r a r= − − − 42 12 22 32y x y z

r a a r a r a r= − − −

43 13 23 33z x y z
r a a r a r a r= − − −

14

Appendix B. Source Code for ThreeSpaceSwordRotation.java

/**

Author: Erick Ramirez Cordero

Supervisors: Mr. Surgent and Mr. England

Class: MAT 267 (Calculus III)

Program: ThreeSpaceSwordRotation.java

Started: 10/31/2014

Completed: 11/16/2014

Description: Rendering a basic sword in three-space with rotation. Honors Project for Calculus

III for Engineers.

Resource: Ammeraal, Leen, and Kang Zhang. "Computer Graphics for Java Programmers."

 Second ed. England: John Wiley & Sons, 2007. Print.

*/

importjava.awt.*; //Contains all the classes for creating GUIs and Graphics

importjava.awt.event.*;

public class ThreeSpaceSwordRotation extends Frame

{

public static void main(String[] args) //Pulls up the Console to create the GUI

 {

 newThreeSpaceSwordRotation();

 }

 ThreeSpaceSwordRotation()//Generates the GUI for the Cube

 {

 super("A sword rotating in Three Space");

 addWindowListener(new WindowAdapter()

 {public void windowClosing(WindowEvent e){System.exit(0);}});

 setLayout(new BorderLayout());

 //Creates the Cube to be displayed

 add("Center", new CvCubePers());

 Dimension dim = getToolkit().getScreenSize();

 setSize(dim.width/2, dim.height/2);

 setLocation(dim.width/4, dim.height/4);

 show();

 }

}

classCvCubePers extends Canvas implements Runnable

{

 intcenterX, centerY, w, h; //Variables for centering the objects according to the screen

 Obj obj = new Obj(); // An object for the class Obj

15

 Image image;

 Graphics gImage;

 double alpha = 0; //Degree to rotate cube

 Thread thr = new Thread(this);

 public void run() //Continuous Rotation

 {

 try

 {

 for (;;)

 {

 alpha += 0.01; //Increases the degree to rotate the cube

 repaint();

 Thread.sleep(20); //Delay between rotations in milliseconds

 }

}

 catch (InterruptedException e){}

 }

 CvCubePers(){thr.start();}

 public void update(Graphics g) //Method to repaint the graphic for every rotation

 {

 paint(g);

 }

intiX(float x)

 {

 returnMath.round(centerX + x);

 }

intiY(float y)

 {

 returnMath.round(centerY - y);

 }

void line(int i, int j)

//Draws lines based on the points calculated in the class "Obj" and the size of the screen

 {

 Point2D p = obj.vScr[i], q = obj.vScr[j];

 gImage.drawLine(iX(p.x), iY(p.y), iX(q.x), iY(q.y));

 }

public void paint(Graphics g)

16

 {

 Dimension dim = getSize();

 intmaxX = dim.width - 1;

 intmaxY = dim.height - 1;

 centerX = maxX/2;

 centerY = maxY/2;

 intminMaxXY = Math.min(maxX, maxY);

 obj.d = obj.rho * minMaxXY / obj.objSize; //Definesdistance 'd' in class Obj

 obj.rotateSword(alpha); //Triggers the rotation

 obj.eyeAndScreen(); //Triggers the Viewing and Perspective Transformations

 if (w != dim.width || h != dim.height) //Failsafe for if model size exceeds screen

 {

 w = dim.width; h = dim.height;

 image = createImage(w, h);

 gImage = image.getGraphics();

 }

 gImage.clearRect(0, 0, w, h); //Erases previous rotations

 //Lines between screen coordinates to be drawn by line method

 // Horizontal edges at the bottom:

 line(0, 1);

 line(1, 2);

 line(2, 3);

 line(3, 0);

 // Horizontal edges at the top:

 line(4, 5);

 line(5, 6);

 line(6, 7);

 line(7, 4);

 // Vertical edges:

 line(0, 4);

 line(1, 5);

 line(2, 6);

 line(3, 7);

 //Tip of blade

 line(4, 8);

 line(5, 8);

 line(6, 8);

17

 line(7, 8);

 //Hilt of Sword

 line(9, 0);

 line(10, 3);

 line(9, 10);

 line(11, 1);

 line(12, 2);

 line(11,12);

 line(13, 0);

 line(14, 1);

 line(13,14);

 line(15, 3);

 line(16, 2);

 line(15,16);

 //Base of Sword

 line(17, 18);

 line(18, 19);

 line(19, 20);

 line(20, 17);

 line(0, 17);

 line(1, 18);

 line(2, 19);

 line(3, 20);

 g.drawImage(image, 0, 0, null); //Renders all of the drawn lines to form the image

 }

}

class Obj // Contains 3D object data and the Transformations

{

 float rho, theta=0.3F, phi=1.3F, d, objSize, v11, v12, v13, v21, v22, v23, v32, v33, v43;

 // Elements of viewing matrix V

 Point3D[] s;//Starting set of points

 Point3D[] w; // World coordinates in an array "w" using Point3D as a data type

 Point2D[] vScr; // Screen coordinates in an array "vScr" using Point2D as a data type

 Obj() //Default Constructor to generate 3D coordinates of cube

 {

 s = new Point3D[21]; //Starting World Coordinates

18

 w = new Point3D[21]; //World Coordinates after rotation

 vScr = new Point2D[21]; //Screen Coordinates

 // Middle surface:

 s[0] = new Point3D(0,0,0);

 s[1] = new Point3D(1,0,0);

 s[2] = new Point3D(1,1,0);

 s[3] = new Point3D(0,1,0);

 // Top surface:

 s[4] = new Point3D(4,4,4);

 s[5] = new Point3D(5,4,4);

 s[6] = new Point3D(5,5,4);

 s[7] = new Point3D(4,5,4);

 //Tip of Sword

 s[8] = new Point3D(7,7,7);

 //Hilt of Sword

 s[9] = new Point3D(-1,0,0);

 s[10]= new Point3D(-1,1,0);

 s[11]= new Point3D(2,0,0);

 s[12]= new Point3D(2,1,0);

 s[13]= new Point3D(0,-1,0);

 s[14]= new Point3D(1,-1,0);

 s[15]= new Point3D(0,2,0);

 s[16]= new Point3D(1,2,0);

 //Bottom of Sword

 s[17]= new Point3D(-3,-3,-3);

 s[18]= new Point3D(-2,-3,-3);

 s[19]= new Point3D(-2,-2,-3);

 s[20]= new Point3D(-3,-2,-3);

 objSize = (float)Math.sqrt(200F); //object size for rho when used in perspective

 rho = 5 * objSize; //Manipulates object size

 }

voidrotateSword(double alpha) //Rotation of 3D Object

 {

 Rota3D.initRotate(s[0], s[4], alpha); //Axis of Rotation

for (int i=0; i<s.length; i++)

19

 {

 w[i] = Rota3D.rotate(s[i]);

 }

 }

voidinitPersp() //Viewing Transformation using spherical coordinates

 {

 floatcosth = (float)Math.cos(theta);

 floatsinth = (float)Math.sin(theta);

 floatcosph = (float)Math.cos(phi);

 floatsinph = (float)Math.sin(phi);

 //Variables for the Viewing Matrix in the Viewing Transformation

 v11 = -sinth;

 v12 = -cosph * costh;

 v13 = sinph * costh;

 v21 = costh;

 v22 = -cosph * sinth;

 v23 = sinph * sinth;

 v32 = sinph;

 v33 = cosph;

 v43 = -rho;

 }

 voideyeAndScreen() //Viewing and Perspective Transformations Triggered

 {

 initPersp();

 for (int i=0; i<s.length; i++)

 {

 Point3D p = w[i];

 float x = v11 * p.x + v21 * p.y;

 float y = v12 * p.x + v22 * p.y + v32 * p.z;

 float z = v13 * p.x + v23 * p.y + v33 * p.z + v43;

 Point3D Pe = new Point3D(x, y, z); //Viewing Transformation

 vScr[i] = new Point2D(-d * Pe.x/Pe.z, -d * Pe.y/Pe.z); //Perspective

/*

 Creates the 2D points to plot on the screen using the "v11" to "v43"

 variables defined in the class "initPersp()" and stores the

 2D points in the array "vScr"

 */

 }

 }

}

20

// Rota3D.java: Class used in other program files for rotations about an arbitrary axis.

class Rota3D

{

 static double r11, r12, r13, r21, r22, r23, r31, r32, r33, r41, r42, r43;

 static void initRotate(Point3D a, Point3D b, double alpha)

 {

 double v1 = b.x - a.x,

 v2 = b.y - a.y,

 v3 = b.z - a.z,

 theta = Math.atan2(v2, v1),

 phi = Math.atan2(Math.sqrt(v1 * v1 + v2 * v2), v3);

initRotate(a, theta, phi, alpha);

 }

static void initRotate(Point3D a, double theta, double phi, double alpha)

 {

 doublecosAlpha, sinAlpha, cosPhi, sinPhi,

 cosTheta, sinTheta, cosPhi2, sinPhi2,

 cosTheta2, sinTheta2, pi, c,

 a1 = a.x, a2 = a.y, a3 = a.z;

 cosPhi = Math.cos(phi); sinPhi = Math.sin(phi);

 cosPhi2 = cosPhi * cosPhi; sinPhi2 = sinPhi * sinPhi;

 cosTheta = Math.cos(theta);

 sinTheta = Math.sin(theta);

 cosTheta2 = cosTheta * cosTheta;

 sinTheta2 = sinTheta * sinTheta;

 cosAlpha = Math.cos(alpha);

 sinAlpha = Math.sin(alpha);

 c = 1.0 - cosAlpha;

 r11 = cosTheta2 * (cosAlpha * cosPhi2 + sinPhi2) + cosAlpha * sinTheta2;

 r12 = sinAlpha * cosPhi + c * sinPhi2 * cosTheta * sinTheta;

 r13 = sinPhi * (cosPhi * cosTheta * c - sinAlpha * sinTheta);

 r21 = sinPhi2 * cosTheta * sinTheta * c - sinAlpha * cosPhi;

 r22 = sinTheta2 * (cosAlpha * cosPhi2 + sinPhi2) + cosAlpha * cosTheta2;

 r23 = sinPhi * (cosPhi * sinTheta * c + sinAlpha * cosTheta);

 r31 = sinPhi * (cosPhi * cosTheta * c + sinAlpha * sinTheta);

 r32 = sinPhi * (cosPhi * sinTheta * c - sinAlpha * cosTheta);

 r33 = cosAlpha * sinPhi2 + cosPhi2;

 r41 = a1 - a1 * r11 - a2 * r21 - a3 * r31;

 r42 = a2 - a1 * r12 - a2 * r22 - a3 * r32;

 r43 = a3 - a1 * r13 - a2 * r23 - a3 * r33;

21

 }

static Point3D rotate(Point3D p)

 {

 return new Point3D(p.x * r11 + p.y * r21 + p.z * r31 + r41,

 p.x * r12 + p.y * r22 + p.z * r32 + r42,

 p.x * r13 + p.y * r23 + p.z * r33 + r43);

 }

}

class Point2D //Used as a data type for storage of 2D coordinates

{

 float x, y;

 Point2D(float x, float y)

 {

 this.x = x;

 this.y = y;

 }

}

class Point3D //Used as a data type for storage of 3D coordinates

{

 float x, y, z;

 Point3D(float x, float y, float z)

 {

 this.x = x;

 this.y = y;

 this.z = z;

 }

 Point3D(double x, double y, double z)

 {

 this.x = (float)x;

 this.y = (float)y;

 this.z = (float)z;

 }

}

22

Works Cited

1 “
History: The SAGE Air Defense System.” MIT Lincoln Laboratory. Lincoln Laboratory, 1

Jan. 2014. Web. 29 Sept. 2014.

<https://www.ll.mit.edu/about/History/SAGEairdefensesystem.html>.

2
“The First Video Game?” Brookhaven National Laboratory. Brookhaven National Laboratory,

N.d. Web. 14 Oct. 2014. <http://www.bnl.gov/about/history/firstvideo.php>.

3
Carlson, Wayne. “A Critical History of Computer Graphics and Animation.” Ohio State

University, 1 Jan. 2003. Web. 29 Sept. 2014.

<https://design.osu.edu/carlson/history/lessons.html>.

4
Dawber, Damian. Learning Raphaël JS Vector Graphics. Birmingham, UK: Packt, 2013. Web.

 <http://site.ebrary.com.ezproxy1.lib.asu.edu/lib/asulib/reader.action?docID=10714266>.

5
“Introduction.”Introduction – SVG 1.1 (Second Edition). World Wide Web Consortium. 16

Aug. 2011. Web. 21 Nov. 2014. <http://www.w3.org/TR/SVG/intro.html>.

6
Ammeraal, Leen, and Kang Zhang. Computer Graphics for Java Programmers. Second Ed.

 England: John Wiley & Sons, 2007. Print.

