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I. Abstract  

 With the recent success of entrepreneurial actors in the space industry, renewed interest 

in space exploration is ubiquitous. Unsurprisingly, the math involved with these technological 

feats is heavily dependent on differential equations and numerical solutions. The focus of this 

paper is to present the historical evolution of rocket propulsion technology, and to use 

differential equations, numerical methods, and MATLAB programming to model the 1969 

Apollo 11 mission that first put men on the Moon. The model relies on data provided by NASA 

to model the geocentric orbit and trans-lunar trajectory. The results of the modeling are shown to 

be consistent with the figures in the mission description provided by NASA.  

II. History of Rocketry  

 The first true rockets emerged in thirteenth century China as an innovation in warfare. 

Chinese soldiers fighting invading Mongol armies used a crude version of what would be 

classified today as a solid propellant rocket. By filling hollow tubes with gunpowder and leaving 

one end open, the Chinese discovered that the fire, smoke, and gas emitted from the rocket 

would propel arrows to greater velocities and to reach greater ranges. The “rocket” could then be 

attached to an arrow or a long stick for increased accuracy. Similar methods were used for the 

launching of fireworks. Throughout the next few centuries experiments with rocketry continued 

with increasing sophistication. Around the same time period as the Chinese started using 

gunpowder propelled rockets, the monk Roger Bacon of England worked on creating improved 

forms of gunpowder, which allowed for rockets to have an increased range. About a century later 

in France, Jean Froissart found that by launching rockets through tubes the accuracy of the flight 



could be greatly improved. Johannes Fontana of Italy used rocketry technology to create a 

torpedo for setting enemy warships on fire. In the sixteenth century, the German fireworks maker 

Johann Schmidlap invented the first multistage rocket to propel fireworks to greater altitudes. 

While the mathematical framework for modern rocket science was laid out by Isaac Newton and 

other mathematicians in the 1600s, rocketry was used exclusively for warfare throughout the 

eighteenth and nineteenth centuries. It would not be considered as a means of space travel until 

the turn of the 20th century.   

Astronautics developed separately in the U.S, Russia, and Europe. Consequently, the title 

“father of astronautics” is attributed to three different men. These are Konstantin Tsiolkovsky, 

Robert H. Goddard, and Hermann Oberth who were Russian, American, and Romanian 

respectively. Their shared ownership of the title is attributed to the lack of evidence that these 

individuals were aware of each other’s work. 

  Tsiolkovsky first worked with aeronautics by creating the first Russian wind tunnel in 

1897. He used the tunnel to test the aerodynamics of different aircraft designs, specifically 

studying the effects of air friction and surface area on the air speed over the aircraft body. He 

later moved on to consider space travel, publishing perhaps his most significant contribution to 

astronautics in 1903, the rocket equation. The equation is based on the conservation of 

momentum and describes the relationship between the increase in speed of the rocket, the 

effective exhaust velocity, and the mass of the rocket and propellant burned. The equation is 

represented,  
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where the change in the velocity of the rocket is represented as ∆𝑣, the effective exhaust velocity 

as 𝑣௘, the original mass of the rocket including propellant as 𝑚଴, and the final mass of the rocket 

after all propellant has been burned as 𝑚௙. Like the other two fathers of astronautics, 

Tsiolkovsky was especially interested in liquid propellant engines and multi-stage rockets. He 

published his theory of multi-stage rockets in 1929 where he calculated the velocity required to 

escape Earth’s gravity to be 8 km/s. He argued that a multi-stage rocket with a liquid engine that 

used liquid oxygen and hydrogen as propellant would be able to achieve this velocity. Although 

Tsiolkovsky never physically constructed a rocket, his rocket equation and work on escape 

velocities and liquid propellant engines formed the foundation of modern astronautics.  

Unlike Tsiolkovsky, the American scientist Robert Goddard did actually experiment with 

physical rockets. In 1926, in an event which is frequently compared to the first airplane flight, 

Goddard launched the world’s first liquid propellant rocket in Auburn, Massachusetts. The 

rocket was in flight for 2.5 seconds and achieved a speed of 60 miles per hour. The rocket 

reached an altitude of 41 feet and landed 184 feet away from the launch site. The rocket was 10 

feet tall and fueled by liquid oxygen and gasoline. With respect to theoretical contribution, 

Goddard was the first to prove that rockets would work in the vacuum of space and that they 

didn’t need air to push off of. He also furthered the development of sophisticated rockets by 

developing gyro-control and parachute recovery. Goddard’s research was not of much interest to 

the U.S. government at the time, however the Germans, having realized the military applications, 

based their rocketry programs on his work. Goddard laid the foundational engineering of what 

later would become the V-2 rocket in World War II. This foundation included gyroscopic 

control, vanes in the jet stream of the motor for steering, and gimbal-steering. Having made such 



innovative technological advancements, Goddard set the stage for the rapid development of 

rocket science during and after the second world war.  

Around the same time as Goddard was launching the first liquid propellant rockets, the 

Romanian-German scientist Herman Oberth was making similar advancements in liquid 

propellant rocketry in pre-Nazi Germany. Despite his persistence in advocating for the rockets, 

his work was at first rejected by the government and academia. The War ministry regarded his 

proposal for a long-range liquid propellant rocket as a fantasy and his 1922 dissertation on rocket 

design was rejected. Refusing defeat, in 1923 he published the rejected dissertation in his book 

“The Rocket into Interplanetary Space.” The book explained mathematically how to escape the 

gravitational pull of the Earth with rockets and brought him much recognition. In 1931 he built 

Germany’s first liquid propellant rocket and launched it that same year near Berlin. With respect 

to theoretical rocket science, the Oberth maneuver is perhaps his most significant contribution. 

The theoretical spacecraft maneuver is based on the physics that changes in velocity at high 

velocities produce greater changes in kinetic energy than at lower ones. The theory states that the 

engine efficiency is greatest when the burn is initiated at the periapsis of an elliptical orbit, where 

the orbital speed is the greatest. By generating public and government interest in rocketry, 

Oberth inspired other German scientists to contribute to the development of astronautics. The 

work initiated by these scientists led directly to the formation of the German space program 

under the Nazis, and later to the realization of the dream of space travel.   

With the rise of the Nazis in Germany, civilian research on rocketry was outlawed. The 

scientists involved were faced with the tough decision of choosing between abandoning their 

research or working for the military. One of these scientists that had grown interested in the 

military applications of rocket research and had earlier worked for Oberth, was Werner von 



Braun. In 1932 Von Braun was appointed technical director of the Nazi research program. In 

1937, the research group set up camp in the German town of Peenemunde, where they 

concentrated their efforts on the development of the V-2 rocket. The V-2 was revolutionary 

technology for the time with its use of gyroscopic guidance and a computer to track its trajectory 

and correct deviations. It used a liquid propellant engine that ran off liquid ethanol and oxygen 

and produced 60,000 pounds of thrust which allowed for a maximum velocity of 5,670 

kilometers per hour. Each rocket was about 46 feet in height and carried a ton of explosives. It 

was first used by Germany in 1944, where it targeted allied forces London, Paris, and Belgium. 

By the end of the war, 4,000 V-2 missiles had been launched. There were no counter measures 

for the new weapon, but it was developed too late in the war to change the outcome.  

 As the war drew to a close and the allied forces began to overtake V-2 missile facilities 

both the Americans and the Soviets were desperate to get their hands on the technology. The 

U.S. launched operation Paperclip, where Nazi scientists were transported to Fort Bliss, Texas 

and given American citizenship to work for the U.S. on rocketry. The operation was launched 

after the Osenberg List, a listing of important Nazi scientists, was found in an improperly flushed 

toilet. Prominent scientists included Wernher von Braun, Erich W. Neubert, Theodor A. Poppel, 

August Schulze, and Eberhard F.M Rees. In August of 1945, 127 scientists accepted contracts 

with the Research and Development Division of Army Ordinance. For many of these scientists, 

including Von Braun, working for the Americans seemed a much superior option than the 

communist Soviet Union. Deteriorating relations between the U.S and the Soviet Union led to a 

race to develop intercontinental ballistic missiles capable of carrying nuclear warheads. In 1950, 

the team led by Von Braun was transferred to Huntsville, Alabama to work on the Redstone and 

Jupiter missiles. These V-2 derivatives took the first Americans into space. 



 In 1960, president Eisenhower established NASA, and appointed Wernher von Braun as 

chief architect of the Saturn V, the largest rocket ever made. Following the establishment of 

NASA, president John F. Kennedy in 1961 delivered the famous speech “We Choose to Go to 

the Moon,” where he claimed that the U.S would have men on the Moon by the end of the 

decade. Kennedy argued that because the exploration of space was an inevitability, the United 

States should lead the way as modern pioneers. The work of inspiration greatly increased public 

support of the Saturn V project and secured NASA government funding. Later that year the 

Apollo program was established. 

Leading up to the Apollo 11 mission were several preparatory missions that demonstrated 

the capabilities of the Saturn V rocket and the command, service, and lunar modules of the 

spacecraft. These missions began in 1967 and concluded before Apollo 11 in 1969. Before 1967 

NASA conducted tests mainly on the thrust capabilities of the first and second stage engines. The 

later Apollo missions first demonstrated the capabilities of Saturn V and the Apollo spacecraft in 

space near Earth, building up to control systems tests above the lunar surface. The mission 

specifics are given in Table 1. 

Table 1. Listing of Apollo Missions before Apollo 11 

Mission Number  Objectives Completed 

Apollo 1  Failed first manned mission of Apollo. 
 3 astronauts died in a pre-flight procedure 

when a fire spread through the command 
module 

Apollo 4   Unmanned test flight of the Saturn V 
 Tested Command Module Heat shield at Re-

entry speeds 
 Demonstrated the third stage restart  

Apollo 5   First test flight of the Lunar Module  



 Successfully fired the ascent and descent 
engines 

Apollo 6   Second Flight of Saturn V 
 Service Module is used to achieve re-entry 

speeds 
 Saturn V is declared man-rated 

Apollo 7  Demonstrate rendezvous capabilities of 
Apollo Command and Service Modules  

 Demonstrate Broadcasting from Space 

Apollo 8  Demonstrate Trans-Lunar Injection 
 Demonstrate Navigation of Apollo spacecraft 

and trajectory correction 

Apollo 9  Test capabilities of the Lunar Module 
 Demonstrate docking of the Lunar Module 

with the Command Module 
 Demonstrate Self-Sufficiency of Apollo 

Spacecraft 

Apollo 10  Operate Spacecraft around the Moon 
 Orbit the Moon with the Lunar Module 
 Dock Lunar Module with Command Module 

in lunar orbit 

 

The Apollo 11 mission finally put men on the Moon using the Saturn V. In addition to the 

main three stages of propulsion, the rocket contained a lunar module for descent to the lunar 

surface, a command module to carry the astronauts around the Moon in lunar orbit, and a service 

module to make corrections in trajectory throughout the mission. The mission used a free return 

trajectory as a default, where the gravitational pull of the Moon would send the spacecraft back 

to the Earth if there were no expenditure of propellant. Had there been any in-flight problems on 

the way to the Moon, the spacecraft would still have returned to Earth. Because a free trajectory 

to the Moon would not put the Apollo spacecraft close enough to the Moon for a lunar landing, a 

series of trajectory corrections and orbital insertions were performed by the spacecraft.  



The Saturn V stood at 363 feet tall. It consisted of three separate stages, which used the 

newly developed F-1 and J-2 engines for thrust. The first stage was almost entirely fuel and used 

liquid oxygen and RP-1 fuel, a highly refined form of kerosene, as propellant. It was powered by 

five F-1 engines together producing 7.5 million pounds of thrust to accelerate the rocket through 

the lower atmosphere. The second stage consisted of five J-2 rocket engines and used liquid 

oxygen and hydrogen. It accelerated the rocket through the upper atmosphere with about 1.1 

million pounds of thrust. The third stage used a single J-2 engine and ran off the same fuel as the 

second stage. It was used twice during the lunar mission, once to push the spacecraft to low 

Earth orbit and once for trans-lunar insertion. The Saturn V had its first unmanned test flight in 

1967 and was last launched in 1973. The details of the Apollo 11 mission are given in Table 2.  

Table 2. Apollo 11 Mission Overview 

Time of Maneuver in hours after launch Description of Maneuver  

0 – 2:44 Apollo spacecraft and third stage are put into Earth 
orbit of 114 by 116 miles 

2:44 Third stage burns for 5 minutes 48 seconds to put 
Apollo 11 into trans-lunar trajectory. The Command 
and Service Modules disconnect from the third stage 
and Lunar module (LM), flip around, and redock with 
the Lunar Module. 

4:40  Third stage detached from the Apollo spacecraft and 
goes into heliocentric orbit 

75:50  Apollo 11 arrives behind the Moon. Service Propulsion 
Engine (SPS) puts the spacecraft into an orbit of 69 by 
190 miles with a burn time of 357.5 seconds. A second 
burn time of 17 seconds puts the spacecraft into a 
nearly circular orbit of 62 by 70.5 miles.  

100:12 LM detaches from Command Module.  



101:36 LM is Behind the Moon on the 13th orbit. LM fires 
engines for 30 seconds to commence descent orbit 
insertion to an orbit of 9 by 67 miles.  

102:33 LM commences descent initiation by firing engines for 
756.3 seconds. LM is 26,000 feet above lunar surface 
and 5 miles downrange from landing site.  

102:45 Braking thrust is halted, LM lands in the Sea of 
Tranquility at 0 degrees, 41 minutes, 15 seconds north 
latitude and 23 degrees, 26 minutes east longitude, 4 
miles downrange from expected landing spot.  

109:42 Armstrong steps on the Moon 

111:39 Astronauts re-enter the LM. 

124:22 LM ascent stage fires. Burn time of 435 seconds 
putting the LM in an orbit of 11 by 55 miles. 
Command Module is in 25th revolution.  

125:19 LM reaction control system puts the LM into a circular 
orbit of radius 56 miles.  

128:03 LM docks with the Command Module. 

132:00 LM is jettisoned and remains in lunar orbit 

134:00 Trans-Earth injection begins with an SPS burn time of 
150 seconds 

150:30 Course correction with an SPS burn time of 11.2 
seconds 

178:00 Re-entry procedures initiated 

195:13 Parachute deployment  

195:18 Apollo 11 lands in the Pacific Ocean, at 13 degrees, 19 
minutes north latitude and 169 degrees, nine minutes 
west longitude 

 

III. Modeling of the Apollo 11 Lunar Mission 

 This section of the report will use Tsiolkovsky’s rocket equation (Eq.1) and basic orbital 

mechanics to model the transition from Earth orbit to trans-lunar injection. For simplicity the 

modeling will treat the Earth-Moon system as a static single body system, the average distance 



between the Earth and the Moon will be used, and trans-lunar injection will be approximated 

with an ellipse with the Earth at one focus and the Moon at the other. The calculations will be 

compared with the numbers reported by NASA, and the error for each calculation will be given. 

The model in the body of the report will include the necessary equations and results only. The 

computations are in Appendix A. The required input parameters are displayed in Table 3 and a 

visual representation of the trajectory is shown in Figure 1.  

Table 3. Input Parameters 

Input  Value Symbolic Representation 

Gravitational Parameter of 

Earth 

3
14

2
3.98 10

m

s
  E  

Gravitational Parameter of 

the Moon 

3
12

2
4.9 10

m

s
  m  

Radius of the Earth 66.371 10 m  Er  

Radius of the Moon 61.737 10 m  mr  

Average Distance to the 

Moon 

83.844 10 m  d  

Altitude of Earth Orbit 185075m  ,E altr  

Altitude of Lunar Orbit 106619m  ,m altr  



Specific Impulse of J-2 

Engine 

421s  spI  

Vacuum Thrust of J-2 Engine 61.0331 10 N  thrustF  

Total Mass of Saturn V 62.97 10 kg  Totalm  

Gross Mass of Stage One 62.29 10 kg  1m  

Gross Mass of Stage Two 496200kg  
2m  

Gross Mass of Stage Three  123000kg  
3m  

Empty Mass of Stage Three  13500kg  
3,em  

Mass of Launch Escape 3631kg  
sem  

Gravitational Acceleration at 

the Earth Surface 

9.8 /m s  
0g  

First Third Stage Burn 

Duration 

165s  
1t  

Total Third Stage Burn 

Duration 

500s  
totalt  

 



 

 

 

 

 

 

 

Before any orbital calculations can be made, the values of pr  and ar  must be calculated. 

As shown in Figure 1, pr  is calculated from the radius of the Earth and the altitude of the Earth 

orbit, and ar  is calculated from the radius of the Moon and the altitude of lunar orbit. The values 

are calculated as follows:  

 

 

Using the value of pr  and orbital mechanics for circular orbits, the orbital velocity of the 

Apollo 11 spacecraft can be calculated. The gravitational parameter of Earth is also needed. The 

orbital velocity ( 0v ) is calculated from Newton’s Second Law (Eq. 4):  

,p E E altr r r   

,a m m altr r r   

 

Figure 1. Visual of Trans-lunar Injection 

Eq. 2 

Eq. 3 



 

Plugging in known values and simplifying the expression reduces Equation 4 to Equation 

5.    

 

The trans-lunar injection trajectory can be approximated by an ellipse where the major 

axis a , spans half the distance of ar , pr , and d . Equation 6 describes the relationship between 

the major axis a , and the values ar , pr , and d . 

 

The relationship between the velocity of the spacecraft and the elliptical orbit is 

expressed as Equation 7. 

 

Plugging in known values and simplifying the expression gives Equation 8. The trans-

lunar injection velocity is represented as fv . 
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The v  for the maneuver is the difference of fv  and 0v . 

 

Equation 9 yields a v  of 3,129 meters per second. Alternatively, the v  can be 

calculated with Tsiolkovsky’s rocket equation (Eq. 1). 

 

Equation 1 requires the mass of the spacecraft before and after the burn. The mass flow 

rate and effective exhaust velocity of the engine will need to be calculated given the values of the 

specific impulse and vacuum thrust. Equation 10 calculates the effective exhaust velocity ( ev ) 

while Equation 11 calculates the mass flow rate ( m ).  

 

 

To check for accuracy, the time the third stage burns can be calculated and compared 

with the reported burn time. The gross mass and the empty mass of the third stage are needed for 
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this calculation. The fuel burned ( m ) is found with Equation 12, and the burn time ( t ) is 

calculated using Equation 13.  

 

 

This results in a burn time of 438 seconds which is consistent with the reported burn time 

of 500 seconds and has an error of 12.4%. Next, the initial and final mass of the Apollo 11 

spacecraft before and after the trans-lunar injection burn will be calculated. This involves the 

total mass of the Saturn V, the gross mass of all the stages, and the mass of the fuel burned in the 

first third stage burn. To find the mass of fuel burned in the first third stage burn ( burntm ), the 

ratio of the first burn duration to the total burn duration will be multiplied by the mass of the 

total fuel. This is calculated in Equation 14. 

 

Now the terms fm  and 0m  of Equation 1 can be calculated with burntm , the total mass of 

the Saturn V, the gross mass of the stages, the mass of the launch escape, and the mass of the 

usable fuel. The mass of the usable fuel ( useablem ) is calculated by Equation 15. 

 

The terms fm  and 0m  of Equation 1 are calculated as follows:  
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The v  for the trans-lunar injection burn can be calculated with the terms 0m , fm , and 

ev  with Equation 1. This results in a v  of 2,937 meters per second, which is consistent with the 

prior v calculation of 3,129 meters per second. The difference is 6.5%. 

IV. Results  

The results of the previous calculations are shown in Table 4 alongside the figures 

reported by NASA and the relative errors.  

Table 4. Velocity Calculations and Error 

Calculated Quantity  Calculation  Reported Value Error 

Earth Orbital Speed  7791 m/s 7823 m/s 0.41% 

Trans-lunar Injection 

Speed 

10926 m/s 10952 m/s 0.24% 

Delta-v (Orbital 

Mechanics) 

3135 m/s 3129 m/s 0.19% 

Delta-v (Rocket 

Equation) 

2937 m/s 3129 m/s 6.14% 

0 1 2Total burnt sem m m m m m      

0f useablem m m   

Eq. 16 

Eq. 17 



V. MATLAB Model 

 The previous model analytically approximates the actual trans-lunar trajectory by 

neglecting the gravitational influence of the Moon. Given the comparatively small gravitational 

influence of the Moon relative to the Earth, this is a reasonable approximation. However, a 

numerical solution can provide a more accurate approximation for the two-body system. With 

such a model, the MATLAB interface can be used to create a visual simulation of the trajectory. 

The numerical model in this report will use the Improved Euler and fourth order Runge Kutta 

methodologies. The MATLAB script is included in Appendix B. 

 If a two-dimensional Cartesian coordinate system is imposed on the two-body system 

where the center of the Earth lies at the origin, and the movement of the Earth is assumed to be 

negligible, the x and y coordinates of the spacecraft can be represented as x  and y . Similarly, 

the x and y coordinates of the Moon can be represented mx  and my . Using Newton’s Law of 

Universal Gravitation with two bodies and constants in Table 3, the acceleration of the spacecraft 

in the x and y directions, noted xa  and ya , can be computed as follows:  

 

 

While xa  and ya  represent the computed values of the spacecraft’s acceleration, ( , )f x y  and 

( , )g y x  will be used to represent the expressions for calculating the x and y accelerations respectively. 
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Given the initial conditions for the position and velocity of the spacecraft, the Runge Kutta method can be 

used to make iterative calculations of the velocity using iterative calculations of xa  and ya . The counting 

index for the iterations will be represented as n  and the step size as t . The x and y velocities of the 

spacecraft will be noted xv and yv , and are calculated as follows: 
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Finally, x  and y  can be calculated with xv  and yv  using Improved Euler’s Method. 
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Animating the plot of the position of the spacecraft with MATLAB yields Figures 2 and 3. The 

trajectory of the spacecraft is marked with green, and the Earth and the Moon are drawn in blue and black 

respectively. The spacecraft orbits the Earth once before initiating the burn for trans-lunar injection and 

completing a free-return trajectory. The Moon is not drawn to scale.  
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Figure 2. Trans-lunar Insertion in Progress 

 

Figure 3. Complete Free-Return Path 



VI. Conclusion  

 As demonstrated, a basic understanding of orbital mechanics and the equations governing 

rocket propulsion yields a reasonably accurate model of a complex maneuver such as the trans-

lunar injection of Apollo 11. Although the analytical model is only a rough approximation, the 

ease of implementing numerical methods with modern computing allows for precise solutions to 

complicated non-linear differential equations. The MATLAB software and interface allows for 

these solutions to be computed with relatively simple code and simulated in a visually 

comprehensive way. In this modeling, the math involved in rocket propulsion and orbital 

mechanics illustrates the importance of differential equations and their applications in physical 

systems. Today, advancements in aerospace and astronautics are being made at a surprising rate 

and have inspired a new interest in space exploration that has not been felt since the Apollo 

program. These advancements all are dependent on mathematical modeling using differential 

equations and numerical solutions.   

 

 

 

 

 

 

 



Appendix A 

Calculations for pr  and ar  values (Eq.2, Eq.3): 

 

 

Calculation for Apollo 11 orbital velocity ( 0v , Eq. 5): 

 

Calculation for Equation 6:  

 

 

Calculation for trans-lunar injection velocity ( fv , Eq. 8): 
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Calculation for orbital mechanics v  (Eq.12): 

 

Calculation for effective exhaust velocity ( ev , Eq. 10): 

 

Calculation for mass flow rate ( m , Eq. 11): 

 

Calculations for Equations 12 and 13:  

 

 

Calculation for mass burnt in first third stage burn ( burntm , Eq. 14): 
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Calculation for useable third stage fuel mass ( useablem , Eq. 15): 

 

Calculation for Apollo 11 mass pre-burn ( 0m , Eq. 16):  

 

 

Calculation for Apollo 11 mass post-burn ( fm , Eq. 17): 

 

Calculation for rocket equation v  (Eq. 1): 
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Appendix B 

MATLAB function files:  

function apollo_accelx = Apollo_accelf(x,y,mx,my) 
  G_Param = 5.162387e12; % km^3/hr^2 
  G_Param_Moon = 6.351564e10; % km^3/hr^2 
  dt = 0.01; 
  dt1 = 0.005; 
   
  k1 = dt*((G_Param_Moon*(mx-x))/(((mx-x)^2 + (my-y)^2)^(1.5)) - 
(G_Param*x)/((x^2 + y^2)^(1.5))); 
  k2 = dt*((G_Param_Moon*(mx-(x+dt1)))/(((mx-(x+dt1))^2 + (my-
(y+0.5*k1))^2)^(1.5)) - (G_Param*(x+dt1))/(((x+dt1)^2 + 
(y+0.5*k1)^2)^(1.5))); 
  k3 = dt*((G_Param_Moon*(mx-(x+dt1)))/(((mx-(x+dt1))^2 + (my-
(y+0.5*k2))^2)^(1.5)) - (G_Param*(x+dt1))/(((x+dt1)^2 + 
(y+0.5*k2)^2)^(1.5))); 
  k4 = dt*((G_Param_Moon*(mx-(x+dt)))/(((mx-(x+dt))^2 + (my-(y+k3))^2)^1.5) - 
(G_Param*(x+dt))/(((x+dt)^2 + (y+k3)^2)^(1.5))); 
   
  apollo_accelx = (1/6)*(k1 + 2*k2 + 2*k3 + k4); 
end 
 
function moon_accel = moon_accelf(mx,my,d) 
  G_Param = 5.162387e12; % km^3/hr^2 
  moon_accel = -(G_Param*d)/(((mx^2 + my^2))^(1.5)); 
end  

Simulation Script:  

% Translunar Insertion Simulation (Newtonian) 
% Runge Kutta and Improved Euler's  
  
clear 
clc 
  
%% Constants  
  
Earth_Radius = 6371; % km 
Moon_Radius = 1737; % km 
Moon_Apogee = 405696; % km  
Moon_Perigee = 363104; % km  
G_Param = 5.162387e12; % km^3/hr^2 
G_Param_Moon = 6.351564e10; % km^3/hr^2 
Moon_Period = 696; % hrs 
Moon_apogee_v = 3450; % km/hr 
Apollo_Earth_alt = 185.075; % km 
Apollo_Earth_orb_v = 28163; % km/hr 
Apollo_Delta_v = 10750; % km/hr 
Apollo_Delta_v2 = -4250; % km/hr 
Burn_Time1 = 166; % iteration count of burn  
Omega = Apollo_Earth_orb_v/(Apollo_Earth_alt+Earth_Radius); % rad/hr 



Moon_Initial_Angle = -0.15; % rad 
  
%% Earth Drawing 
  
Earth_x = linspace(-Earth_Radius, Earth_Radius, 1000); 
Earth_y = [sqrt(Earth_Radius^2 - (Earth_x).^2);-sqrt(Earth_Radius^2 - 
(Earth_x).^2)]; 
  
%% Lunar Orbit Initial Conditions  
  
%Iteration Specifics 
dt=0.01; % 36 seconds 
index = 0:dt:0.33*Moon_Period; % iteration counter 
  
% Position 
Moon_pos = zeros(2,length(index)); % row 1 = x / row 2 = y 
Moon_pos(1:2,1) = 
[Moon_Apogee*cos(Moon_Initial_Angle);Moon_Apogee*sin(Moon_Initial_Angle)]; 
  
% Velocity 
Moon_v = zeros(2,length(index)); % row 1 = velocity in x / row 2 = velocity 
in y 
Moon_v(1:2,1) = [Moon_apogee_v*sin(-Moon_Initial_Angle);Moon_apogee_v*cos(-
Moon_Initial_Angle)]; 
  
% Acceleration  
Moon_a = zeros(2,length(index)); % row 1 = accel in x / row 2 = accel in y 
Moon_a(1:2,1) = 
[moon_accelf(Moon_pos(1,1),Moon_pos(2,1),Moon_pos(1,1));moon_accelf(Moon_pos(
1,1),Moon_pos(2,1),Moon_pos(2,1))]; 
  
%% Apollo Spacecraft Initial Conditions 
  
% Position 
Apollo_pos = zeros(2,length(index)); % row 1 = x / row 2 = y 
Apollo_pos(1:2,1) = [-(Apollo_Earth_alt + Earth_Radius);0];  
  
% Velocity 
Apollo_v = zeros(3,length(index)); % row 1 = velocity in x / row 2 = velocity 
in y / row 3 = velocity in y 
Apollo_v(1:3,1) = [0;-Apollo_Earth_orb_v;Apollo_Earth_orb_v]; 
  
% Acceleration  
Apollo_a=zeros(3,length(index)); % row 1 = accel in x / row 2 = accel in y / 
row 3 = total accel 
Apollo_a(1:2,1) = 
[Apollo_accelf(Apollo_pos(1,1),Apollo_pos(2,1),Moon_pos(1,1),Moon_pos(2,1));A
pollo_accelf(Apollo_pos(2,1),Apollo_pos(1,1),Moon_pos(2,1),Moon_pos(1,1))]; 
Apollo_a(3,1) = sqrt(Apollo_a(1,1)^2 + Apollo_a(2,1)^2); 
  
%% Simulation 
  
for t=2:length(index) 
     
    % Moon Acceleration 



    Moon_a(1:2,t) = [moon_accelf(Moon_pos(1,t-1),Moon_pos(2,t-
1),Moon_pos(1,t-1));moon_accelf(Moon_pos(1,t-1),Moon_pos(2,t-1),Moon_pos(2,t-
1))]; 
     
    % Moon Velocity 
    Moon_v(1:2,t) = [Moon_v(1,t-1) + 0.5*dt*(Moon_a(1,t-
1)+Moon_a(1,t));Moon_v(2,t-1) + 0.5*dt*(Moon_a(2,t-1)+Moon_a(2,t))]; 
     
    % Moon Position 
    Moon_pos(1:2,t) = [Moon_pos(1,t-1) + 0.5*dt*(Moon_v(1,t-
1)+Moon_v(1,t));Moon_pos(2,t-1) + 0.5*dt*(Moon_v(2,t-1)+Moon_v(2,t))]; 
     
    % Apollo Acceleration 
    Apollo_a(1:2,t) = [Apollo_accelf(Apollo_pos(1,t-1),Apollo_pos(2,t-
1),Moon_pos(1,t-1),Moon_pos(2,t-1));Apollo_accelf(Apollo_pos(2,t-
1),Apollo_pos(1,t-1),Moon_pos(2,t-1),Moon_pos(1,t-1))]; 
    Apollo_a(3,t) = sqrt(Apollo_a(1,t)^2 + Apollo_a(2,t)^2); 
     
    % Apollo Velocity 
    if t==Burn_Time1 % delta-v 
         
        angle = atan(Apollo_v(2,t-1)/Apollo_v(1,t-1)); 
            if Apollo_v(2,t-1)<0 && Apollo_v(1,t-1)<0 || Apollo_v(2,t-1)>0 && 
Apollo_v(1,t-1)<0 
                angle = angle + pi; 
            else 
            end 
        Apollo_v(1:2,t) = [(Apollo_Earth_orb_v + 
Apollo_Delta_v)*cos(angle);(Apollo_Earth_orb_v + Apollo_Delta_v)*sin(angle)]; 
        Apollo_v(3,t) = sqrt(Apollo_v(1,t)^2 + Apollo_v(2,t)^2); 
         
         
    elseif t>Burn_Time1 % Normal rk  
        
        Apollo_v(1:2,t) = [Apollo_v(1,t-1) + Apollo_a(1,t);Apollo_v(2,t-1) + 
Apollo_a(2,t)]; 
        Apollo_v(3,t) =  sqrt(Apollo_v(1,t)^2 + Apollo_v(2,t)^2); 
         
    else % Earth Orbit 
         
        Apollo_v(1:2,t) = [-
Apollo_Earth_orb_v*sin(Omega*index(t)+pi);Apollo_Earth_orb_v*cos(Omega*index(
t)+pi)]; 
        Apollo_v(3,t) = sqrt(Apollo_v(1,t)^2 + Apollo_v(2,t)^2); 
         
    end 
     
    % Apollo Position 
    if t<=Burn_Time1 % Earth Orbit 
        Apollo_pos(1:2,t) = 
[(Apollo_Earth_alt+Earth_Radius)*cos(Omega*index(t)+pi);(Apollo_Earth_alt+Ear
th_Radius)*sin(Omega*index(t)+pi)]; 
    else 
        if ((Moon_pos(1,t-1)-Apollo_pos(1,t-1))^2  + (Moon_pos(2,t-1)-
Apollo_pos(2,t-1))^2) < (Moon_Radius)^2 
             



            Apollo_pos(1:2,t) = [Moon_pos(1,t-1); Moon_pos(2,t-1)]; % Apollo 
hits moon 
             
        elseif Apollo_pos(1,t-1)^2 + Apollo_pos(2,t-1)^2 < Earth_Radius^2 
             
            Apollo_pos(1:2,t) = [Apollo_pos(1,t-1);Apollo_pos(2,t-1)]; % 
Apollo hits Earth  
             
        else 
                  
            Apollo_pos(1:2,t) = [Apollo_pos(1,t-1) + 0.5*dt*(Apollo_v(1,t-
1)+Apollo_v(1,t));Apollo_pos(2,t-1) + 0.5*dt*(Apollo_v(2,t-
1)+Apollo_v(2,t))]; 
             
        end 
    end 
     
    % Earth  
    plot(Earth_x, Earth_y(1,:),'b', Earth_x, Earth_y(2,:),'b') 
    grid on  
    axis([-50000 450000 -100000 300000]) 
    hold on  
         
    % Simulation Plot 
    
plot(Moon_pos(1,t),Moon_pos(2,t),'ko',Apollo_pos(1,1:t),Apollo_pos(2,1:t),'g'
) 
    title('Translunar Injection (Free-Return)') 
    xlabel('Position x (km)') 
    ylabel('Position y (km)') 
     
    pause(0.0001); 
    hold off 
     
end 
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